
Contents

Concepts
Scheduler
FifoWorker
ExceptionTranslator
StateBase
SimpleState
State
Event

state_machine.hpp
Class template state_machine

asynchronous_state_machine.hpp
Class template asynchronous_state_machine

event_processor.hpp
Class template event_processor

fifo_scheduler.hpp
Class template fifo_scheduler

exception_translator.hpp
Class template exception_translator

null_exception_translator.hpp
Class null_exception_translator

simple_state.hpp

Enum history_mode

Class template simple_state

state.hpp
Class template state

shallow_history.hpp
Class template shallow_history

deep_history.hpp
Class template deep_history

event_base.hpp

Class event_base

event.hpp
Class template event

transition.hpp

Class template transition

in_state_reaction.hpp
Class template in_state_reaction

termination.hpp
Class template termination

deferral.hpp
Class template deferral

custom_reaction.hpp
Class template custom_reaction

result.hpp
Class result

The Boost Statechart Library

Reference

Page 1 of 35The Boost Statechart Library - Reference

2008/01/06

Concepts

Scheduler concept

A Scheduler type defines the following:

� What is passed to the constructors of event_processor<> subtypes and how the lifetime of such objects

is managed
� Whether or not multiple event_processor<> subtype objects can share the same queue and scheduler

thread
� How events are added to the schedulers' queue
� Whether and how to wait for new events when the schedulers' queue runs empty
� Whether and what type of locking is used to ensure thread-safety
� Whether it is possible to queue events for no longer existing event_processor<> subtype objects and

what happens when such an event is processed
� What happens when one of the serviced event_processor<> subtype objects propagates an exception

For a Scheduler type S and an object cpc of type const S::processor_context the following

expressions must be well-formed and have the indicated results:

To protect against abuse, all members of S::processor_context should be declared private. As a result,

event_processor<> must be a friend of S::processor_context.

FifoWorker concept

A FifoWorker type defines the following:

� Whether and how to wait for new work items when the internal work queue runs empty
� Whether and what type of locking is used to ensure thread-safety

For a FifoWorker type F, an object f of that type, a const object cf of that type, a parameterless function object

w of arbitrary type and an unsigned long value n the following expressions/statements must be well-formed

and have the indicated results:

Expression Type Result

cpc.my_scheduler() S & A reference to the scheduler

cpc.my_handle() S::processor_handle The handle identifying the event_processor<> subtype object

Expression/Statement Type Effects/Result

F::work_item
boost::function0<

void >

F() or F(false) F

Constructs a non-blocking (see below) object of the
FifoWorker type. In single-threaded builds the second
expression is not well-formed

F(true) F
Constructs a blocking (see below) object of the FifoWorker
type. Not well-formed in single-threaded builds

f.queue_work_item

(w);

Constructs and queues an object of type F::work_item,

passing w as the only argument

f.terminate();

Creates and queues an object of type F::work_item that,

when later executed in operator()(), leads to a modification

of internal state so that terminated() henceforth returns
true

true if terminate() has been called and the resulting work

item has been executed in operator()(). Returns false

Page 2 of 35The Boost Statechart Library - Reference

2008/01/06

ExceptionTranslator concept

An ExceptionTranslator type defines how C++ exceptions occurring during state machine operation are translated
to exception events.

For an ExceptionTranslator object et, a parameterless function object a of arbitrary type returning result and a

function object eh of arbitrary type taking a const event_base & parameter and returning result the

following expression must be well-formed and have the indicated results:

StateBase concept

A StateBase type is the common base of all states of a given state machine type.
state_machine<>::state_base_type is a model of the StateBase concept.

For a StateBase type S and a const object cs of that type the following expressions must be well-formed and

have the indicated results:

cf.terminated(); bool

otherwise

Must only be called from the thread that also calls
operator()()

f(n); unsigned long

Enters a loop that, with each cycle, dequeues and calls
operator()() on the oldest work item in the queue.

The loop is left and the number of executed work items
returned if one or more of the following conditions are met:

� f.terminated() == true

� The application is single-threaded and the internal
queue is empty

� The application is multi-threaded and the internal queue
is empty and the worker was created as non-blocking

� n != 0 and the number of work items that have been

processed since operator()() was called equals n

If the queue is empty and none of the above conditions are
met then the thread calling operator()() is put into a wait

state until f.queue_work_item() is called from another

thread.

Must only be called from exactly one thread

f(); unsigned long
Has exactly the same semantics as f(n); with n == 0 (see

above)

Expression Type Effects/Result

et

(a, eh);
result

1. Attempts to execute return a();

2. If a() propagates an exception, the exception is caught

3. Inside the catch block calls eh, passing a suitable stack-allocated model of the

Event concept
4. Returns the result returned by eh

Expression Type Result

cs.outer_state_ptr() const S *
0 if cs is an outermost state, a pointer to the direct outer state of

cs otherwise

A value unambiguously identifying the most-derived type of

Page 3 of 35The Boost Statechart Library - Reference

2008/01/06

SimpleState concept

A SimpleState type defines one state of a particular state machine.

For a SimpleState type S and a pointer pS pointing to an object of type S allocated with new the following

expressions/statements must be well-formed and have the indicated effects/results:

State concept

A State is a refinement of SimpleState (that is, except for the default constructor a State type must also satisfy
SimpleState requirements). For a State type S, a pointer pS of type S * pointing to an object of type S allocated

with new, and an object mc of type state< S, C, I, h >::my_context the following

expressions/statements must be well-formed:

cs.dynamic_type() S::id_type

cs. S::id_type values are comparable with operator==()

and operator!=(). An unspecified collating order can be

established with std::less< S::id_type >. In contrast to

typeid(cs), this function is available even on platforms that

do not support C++ RTTI (or have been configured to not
support it)

cs.custom_dynamic_type_ptr<

 Type >()

const Type

*

A pointer to the custom type identifier or 0. If != 0, Type must

match the type of the previously set pointer. This function is
only available if
BOOST_STATECHART_USE_NATIVE_RTTI is not defined

Expression/Statement Type Effects/Result/Notes

simple_state<

 S, C, I, h > * pB =

 pS;

simple_state< S, C, I, h > must be an

unambiguous public base of S. See

simple_state<> documentation for the

requirements and semantics of C, I and h

new S() S *

Enters the state S. Certain functions must not be

called from S::S(), see simple_state<>

documentation for more information

pS->exit();

Exits the state S (first stage). The definition of

an exit member function within models of the

SimpleState concept is optional since
simple_state<> already defines the following

public member: void exit() {}. exit() is

not called when a state is exited while an
exception is pending, see
simple_state<>::terminate() for more

information

delete pS; Exits the state S (second stage)

S::reactions

An mpl::list<> that is either

empty or contains instantiations of
the custom_reaction,

in_state_reaction, deferral,

termination or transition class

templates. If there is only a single
reaction then it can also be
typedefed directly, without

wrapping it into an mpl::list<>

The declaration of a reactions member

typedef within models of the SimpleState

concept is optional since simple_state<>

already defines the following public member:
typedef mpl::list<> reactions;

Expression/Statement Type Effects/Result/Notes

Page 4 of 35The Boost Statechart Library - Reference

2008/01/06

Event concept

A Event type defines an event for which state machines can define reactions.

For a Event type E and a pointer pCE of type const E * pointing to an object of type E allocated with new the

following expressions/statements must be well-formed and have the indicated effects/results:

Header <boost/statechart/state_machine.hpp>

Class template state_machine

This is the base class template of all synchronous state machines.

Class template state_machine parameters

Class template state_machine synopsis

state< S, C, I, h > *

 pB = pS;

state< S, C, I, h > must be an unambiguous public base of S. See

state<> documentation for the requirements and semantics of C, I and h

new S(mc) S *

Enters the state S. No restrictions exist regarding the functions that can be

called from S::S() (in contrast to the constructors of models of the

SimpleState concept). mc must be forwarded to state< S, C, I, h
>::state()

Expression/Statement Type Effects/Result/Notes

const event< E > * pCB = pCE; event< E > must be an unambiguous public base of E

new E(*pCE) E * Makes a copy of pE

Template parameter Requirements Semantics Default

MostDerived

The most-derived
subtype of this class
template

InitialState

A model of the
SimpleState or State
concepts. The
Context argument

passed to the
simple_state<> or

state<> base of

InitialState must

be MostDerived.

That is,
InitialState must

be an outermost state
of this state machine

The state that is entered when
state_machine<>

::initiate() is called

Allocator

A model of the
standard Allocator
concept

Allocator::rebind<>::other

is used to allocate and deallocate
all simple_state subtype

objects and internal objects of
dynamic storage duration

std::allocator< void >

ExceptionTranslator

A model of the
ExceptionTranslator
concept

see ExceptionTranslator concept null_exception_translator

Page 5 of 35The Boost Statechart Library - Reference

2008/01/06

namespace boost

{

namespace statechart

{

 template<

 class MostDerived,

 class InitialState,

 class Allocator = std::allocator< void >,

 class ExceptionTranslator = null_exception_translator >

 class state_machine : noncopyable

 {

 public:

 typedef MostDerived outermost_context_type;

 void initiate();

 void terminate();

 bool terminated() const;

 void process_event(const event_base &);

 template< class Target >

 Target state_cast() const;

 template< class Target >

 Target state_downcast() const;

 // a model of the StateBase concept

 typedef implementation-defined state_base_type;

 // a model of the standard Forward Iterator concept

 typedef implementation-defined state_iterator;

 state_iterator state_begin() const;

 state_iterator state_end() const;

 void unconsumed_event(const event_base &) {}

 protected:

 state_machine();

 ~state_machine();

 void post_event(

 const intrusive_ptr< const event_base > &);

 void post_event(const event_base &);

 };

}

}

Class template state_machine constructor and destructor

state_machine();

Effects: Constructs a non-running state machine

~state_machine();

Effects: Destructs the currently active outermost state and all its direct and indirect inner states. Innermost states
are destructed first. Other states are destructed as soon as all their direct and indirect inner states have been
destructed. The inner states of each state are destructed according to the number of their orthogonal region. The
state in the orthogonal region with the highest number is always destructed first, then the state in the region with
the second-highest number and so on
Note: Does not attempt to call any exit member functions

Page 6 of 35The Boost Statechart Library - Reference

2008/01/06

Class template state_machine modifier functions

void initiate();

Effects:

1. Calls terminate()

2. Constructs a function object action with a parameter-less operator()() returning result that

a. enters (constructs) the state specified with the InitialState template parameter

b. enters the tree formed by the direct and indirect inner initial states of InitialState depth first.

The inner states of each state are entered according to the number of their orthogonal region. The state
in orthogonal region 0 is always entered first, then the state in region 1 and so on

3. Constructs a function object exceptionEventHandler with an operator()() returning result

and accepting an exception event parameter that processes the passed exception event, with the following
differences to the processing of normal events:

� From the moment when the exception has been thrown until right after the execution of the exception
event reaction, states that need to be exited are only destructed but no exit member functions are

called
� Reaction search always starts with the outermost unstable state
� As for normal events, reaction search moves outward when the current state cannot handle the event.

However, if there is no outer state (an outermost state has been reached) the reaction search is
considered unsuccessful. That is, exception events will never be dispatched to orthogonal regions
other than the one that caused the exception event

� Should an exception be thrown during exception event reaction search or reaction execution then the
exception is propagated out of the exceptionEventHandler function object (that is,

ExceptionTranslator is not used to translate exceptions thrown while processing an exception

event)
� If no reaction could be found for the exception event or if the state machine is not stable after

processing the exception event, the original exception is rethrown. Otherwise, a result object is

returned equal to the one returned by simple_state<>::discard_event()

4. Passes action and exceptionEventHandler to ExceptionTranslator::operator()(). If

ExceptionTranslator::operator()() throws an exception, the exception is propagated to the

caller. If the caller catches the exception, the currently active outermost state and all its direct and indirect
inner states are destructed. Innermost states are destructed first. Other states are destructed as soon as all
their direct and indirect inner states have been destructed. The inner states of each state are destructed
according to the number of their orthogonal region. The state in the orthogonal region with the highest
number is always destructed first, then the state in the region with the second-highest number and so on.
Continues with step 5 otherwise (the return value is discarded)

5. Processes all posted events (see process_event()). Returns to the caller if there are no more posted

events

Throws: Any exceptions propagated from ExceptionTranslator::operator()(). Exceptions never

originate in the library itself but only in code supplied through template parameters:

� Allocator::rebind<>::other::allocate()

� state constructors
� react member functions

� exit member functions

� transition-actions

void terminate();

Effects:

1. Constructs a function object action with a parameter-less operator()() returning result that

terminates the currently active outermost state, discards all remaining events and clears all history
information

2. Constructs a function object exceptionEventHandler with an operator()() returning result

and accepting an exception event parameter that processes the passed exception event, with the following
differences to the processing of normal events:

Page 7 of 35The Boost Statechart Library - Reference

2008/01/06

� From the moment when the exception has been thrown until right after the execution of the exception
event reaction, states that need to be exited are only destructed but no exit member functions are

called
� Reaction search always starts with the outermost unstable state
� As for normal events, reaction search moves outward when the current state cannot handle the event.

However, if there is no outer state (an outermost state has been reached) the reaction search is
considered unsuccessful. That is, exception events will never be dispatched to orthogonal regions
other than the one that caused the exception event

� Should an exception be thrown during exception event reaction search or reaction execution then the
exception is propagated out of the exceptionEventHandler function object (that is,

ExceptionTranslator is not used to translate exceptions thrown while processing an exception

event)
� If no reaction could be found for the exception event or if the state machine is not stable after

processing the exception event, the original exception is rethrown. Otherwise, a result object is

returned equal to the one returned by simple_state<>::discard_event()

3. Passes action and exceptionEventHandler to ExceptionTranslator::operator()(). If

ExceptionTranslator::operator()() throws an exception, the exception is propagated to the

caller. If the caller catches the exception, the currently active outermost state and all its direct and indirect
inner states are destructed. Innermost states are destructed first. Other states are destructed as soon as all
their direct and indirect inner states have been destructed. The inner states of each state are destructed
according to the number of their orthogonal region. The state in the orthogonal region with the highest
number is always destructed first, then the state in the region with the second-highest number and so on.
Otherwise, returns to the caller

Throws: Any exceptions propagated from ExceptionTranslator::operator(). Exceptions never

originate in the library itself but only in code supplied through template parameters:

� Allocator::rebind<>::other::allocate()

� state constructors
� react member functions

� exit member functions

� transition-actions

void process_event(const event_base &);

Effects:

1. Selects the passed event as the current event (henceforth referred to as currentEvent)

2. Starts a new reaction search
3. Selects an arbitrary but in this reaction search not yet visited state from all the currently active innermost

states. If no such state exists then continues with step 10
4. Constructs a function object action with a parameter-less operator()() returning result that does

the following:
a. Searches a reaction suitable for currentEvent, starting with the current innermost state and

moving outward until a state defining a reaction for the event is found. Returns
simple_state<>::forward_event() if no reaction has been found

b. Executes the found reaction. If the reaction result is equal to the return value of
simple_state<>::forward_event() then resumes the reaction search (step a). Returns the

reaction result otherwise
5. Constructs a function object exceptionEventHandler returning result and accepting an exception

event parameter that processes the passed exception event, with the following differences to the processing
of normal events:

� From the moment when the exception has been thrown until right after the execution of the exception
event reaction, states that need to be exited are only destructed but no exit member functions are

called
� If the state machine is stable when the exception event is processed then exception event reaction

search starts with the innermost state that was last visited during the last normal event reaction search
(the exception event was generated as a result of this normal reaction search)

� If the state machine is unstable when the exception event is processed then exception event reaction
search starts with the outermost unstable state

� As for normal events, reaction search moves outward when the current state cannot handle the event.

Page 8 of 35The Boost Statechart Library - Reference

2008/01/06

However, if there is no outer state (an outermost state has been reached) the reaction search is
considered unsuccessful. That is, exception events will never be dispatched to orthogonal regions
other than the one that caused the exception event

� Should an exception be thrown during exception event reaction search or reaction execution then the
exception is propagated out of the exceptionEventHandler function object (that is,

ExceptionTranslator is not used to translate exceptions thrown while processing an exception

event)
� If no reaction could be found for the exception event or if the state machine is not stable after

processing the exception event, the original exception is rethrown. Otherwise, a result object is

returned equal to the one returned by simple_state<>::discard_event()

6. Passes action and exceptionEventHandler to ExceptionTranslator::operator()(). If

ExceptionTranslator::operator()() throws an exception, the exception is propagated to the

caller. If the caller catches the exception, the currently active outermost state and all its direct and indirect
inner states are destructed. Innermost states are destructed first. Other states are destructed as soon as all
their direct and indirect inner states have been destructed. The inner states of each state are destructed
according to the number of their orthogonal region. The state in the orthogonal region with the highest
number is always destructed first, then the state in the region with the second-highest number and so on.
Otherwise continues with step 7

7. If the return value of ExceptionTranslator::operator()() is equal to the one of

simple_state<>::forward_event() then continues with step 3

8. If the return value of ExceptionTranslator::operator()() is equal to the one of

simple_state<>::defer_event() then the return value of

currentEvent.intrusive_from_this() is stored in a state-specific queue. Continues with step 11

9. If the return value of ExceptionTranslator::operator()() is equal to the one of

simple_state<>::discard_event() then continues with step 11

10. Calls static_cast< MostDerived * >(this)->unconsumed_event

(currentEvent). If unconsumed_event() throws an exception, the exception is propagated to

the caller. Such an exception never leads to the destruction of any states (in contrast to exceptions
propagated from ExceptionTranslator::operator()())

11. If the posted events queue is non-empty then dequeues the first event, selects it as currentEvent and

continues with step 2. Returns to the caller otherwise

Throws: Any exceptions propagated from MostDerived::unconsumed_event() or

ExceptionTranslator::operator(). Exceptions never originate in the library itself but only in code

supplied through template parameters:

� Allocator::rebind<>::other::allocate()

� state constructors
� react member functions

� exit member functions

� transition-actions
� MostDerived::unconsumed_event()

void post_event(

 const intrusive_ptr< const event_base > &);

Effects: Pushes the passed event into the posted events queue
Throws: Any exceptions propagated from Allocator::allocate()

void post_event(const event_base & evt);

Effects: post_event(evt.intrusive_from_this());

Throws: Any exceptions propagated from Allocator::allocate()

void unconsumed_event(const event_base & evt);

Effects: None
Note: This function (or, if present, the equally named derived class member function) is called by process_event()
whenever a dispatched event did not trigger a reaction, see process_event() effects, point 10 for more information.

Page 9 of 35The Boost Statechart Library - Reference

2008/01/06

Class template state_machine observer functions

bool terminated() const;

Returns: true, if the machine is terminated. Returns false otherwise

Note: Is equivalent to state_begin() == state_end()

template< class Target >

Target state_cast() const;

Returns: Depending on the form of Target either a reference or a pointer to const if at least one of the

currently active states can successfully be dynamic_cast to Target. Returns 0 for pointer targets and throws

std::bad_cast for reference targets otherwise. Target can take either of the following forms: const

Class * or const Class &

Throws: std::bad_cast if Target is a reference type and none of the active states can be dynamic_cast

to Target
Note: The search sequence is the same as for process_event()

template< class Target >

Target state_downcast() const;

Requires: For reference targets the compiler must support partial specialization of class templates, otherwise a
compile-time error will result. The type denoted by Target must be a model of the SimpleState or State concepts

Returns: Depending on the form of Target either a reference or a pointer to const if Target is equal to the

most-derived type of a currently active state. Returns 0 for pointer targets and throws std::bad_cast for

reference targets otherwise. Target can take either of the following forms: const Class * or const
Class &

Throws: std::bad_cast if Target is a reference type and none of the active states has a most derived type

equal to Target

Note: The search sequence is the same as for process_event()

state_iterator state_begin() const;

state_iterator state_end() const;

Return: Iterator objects, the range [state_begin(), state_end()) refers to all currently active innermost

states. For an object i of type state_iterator, *i returns a const state_base_type & and

i.operator->() returns a const state_base_type *

Note: The position of a given innermost state in the range is arbitrary. It may change with each call to a modifier
function. Moreover, all iterators are invalidated whenever a modifier function is called

Header <boost/statechart/
asynchronous_state_machine.hpp>

Class template asynchronous_state_machine

This is the base class template of all asynchronous state machines.

Class template asynchronous_state_machine parameters

Template parameter Requirements Semantics Default

MostDerived
The most-derived subtype of
this class template

A model of the SimpleState or
State concepts. The Context

Page 10 of 35The Boost Statechart Library - Reference

2008/01/06

Class template asynchronous_state_machine synopsis

namespace boost

{

namespace statechart

{

 template<

 class MostDerived,

 class InitialState,

 class Scheduler = fifo_scheduler<>,

 class Allocator = std::allocator< void >,

 class ExceptionTranslator = null_exception_translator >

 class asynchronous_state_machine :

 public state_machine<

 MostDerived, InitialState, Allocator, ExceptionTranslator >,

 public event_processor< Scheduler >

 {

 protected:

 typedef asynchronous_state_machine my_base;

 asynchronous_state_machine(

 typename event_processor< Scheduler >::my_context ctx);

 ~asynchronous_state_machine();

 };

}

}

Class template asynchronous_state_machine constructor and destructor

asynchronous_state_machine(

 typename event_processor< Scheduler >::my_context ctx);

Effects: Constructs a non-running asynchronous state machine
Note: Users cannot create asynchronous_state_machine<> subtype objects directly. This can only be

done through an object of the Scheduler class

~asynchronous_state_machine();

Effects: Destructs the state machine
Note: Users cannot destruct asynchronous_state_machine<> subtype objects directly. This can only be

done through an object of the Scheduler class

InitialState

argument passed to the
simple_state<> or state<>

base of InitialState must

be MostDerived. That is,

InitialState must be an

outermost state of this state
machine

The state that is
entered when the state
machine is initiated
through the Scheduler

object

Scheduler
A model of the Scheduler
concept

see Scheduler concept fifo_scheduler<>

Allocator
A model of the standard
Allocator concept

 std::allocator< void >

ExceptionTranslator
A model of the
ExceptionTranslator concept

see
ExceptionTranslator
concept

null_exception_translator

Page 11 of 35The Boost Statechart Library - Reference

2008/01/06

Header <boost/statechart/event_processor.hpp>

Class template event_processor

This is the base class template of all types that process events. asynchronous_state_machine<> is just

one possible event processor implementation.

Class template event_processor parameters

Class template event_processor synopsis

namespace boost

{

namespace statechart

{

 template< class Scheduler >

 class event_processor

 {

 public:

 virtual ~event_processor();

 Scheduler & my_scheduler() const;

 typedef typename Scheduler::processor_handle

 processor_handle;

 processor_handle my_handle() const;

 void initiate();

 void process_event(const event_base & evt);

 void terminate();

 protected:

 typedef const typename Scheduler::processor_context &

 my_context;

 event_processor(my_context ctx);

 private:

 virtual void initiate_impl() = 0;

 virtual void process_event_impl(

 const event_base & evt) = 0;

 virtual void terminate_impl() = 0;

 };

}

}

Class template event_processor constructor and destructor

event_processor(my_context ctx);

Effects: Constructs an event processor object and stores copies of the reference returned by
myContext.my_scheduler() and the object returned by myContext.my_handle()

Note: Users cannot create event_processor<> subtype objects directly. This can only be done through an

object of the Scheduler class

Template parameter Requirements Semantics

Scheduler A model of the Scheduler concept see Scheduler concept

Page 12 of 35The Boost Statechart Library - Reference

2008/01/06

virtual ~event_processor();

Effects: Destructs an event processor object
Note: Users cannot destruct event_processor<> subtype objects directly. This can only be done through an

object of the Scheduler class

Class template event_processor modifier functions

void initiate();

Effects: initiate_impl();

Throws: Any exceptions propagated from the implementation of initiate_impl()

void process_event(const event_base & evt);

Effects: process_event_impl(evt);

Throws: Any exceptions propagated from the implementation of process_event_impl()

void terminate();

Effects: terminate_impl();

Throws: Any exceptions propagated from the implementation of terminate_impl()

Class template event_processor observer functions

Scheduler & my_scheduler() const;

Returns: The Scheduler reference obtained in the constructor

processor_handle my_handle() const;

Returns: The processor_handle object obtained in the constructor

Header <boost/statechart/fifo_scheduler.hpp>

Class template fifo_scheduler

This class template is a model of the Scheduler concept.

Class template fifo_scheduler parameters

Class template fifo_scheduler synopsis

namespace boost

{

namespace statechart

{

 template<

Template
parameter

Requirements Semantics Default

FifoWorker A model of the FifoWorker concept
see FifoWorker
concept

fifo_worker<>

Allocator
A model of the standard Allocator
concept

 std::allocator< void >

Page 13 of 35The Boost Statechart Library - Reference

2008/01/06

 class FifoWorker = fifo_worker<>,

 class Allocator = std::allocator< void > >

 class fifo_scheduler : noncopyable

 {

 public:

 fifo_scheduler(bool waitOnEmptyQueue = false);

 typedef implementation-defined processor_handle;

 class processor_context : noncopyable

 {

 processor_context(

 fifo_scheduler & scheduler,

 const processor_handle & theHandle);

 fifo_scheduler & my_scheduler() const;

 const processor_handle & my_handle() const;

 friend class fifo_scheduler;

 friend class event_processor< fifo_scheduler >;

 };

 template< class Processor >

 processor_handle create_processor();

 template< class Processor, typename Param1 >

 processor_handle create_processor(Param1 param1);

 // More create_processor overloads

 void destroy_processor(processor_handle processor);

 void initiate_processor(processor_handle processor);

 void terminate_processor(processor_handle processor);

 typedef intrusive_ptr< const event_base > event_ptr_type;

 void queue_event(

 const processor_handle & processor,

 const event_ptr_type & pEvent);

 typedef typename FifoWorker::work_item work_item;

 void queue_work_item(const work_item & item);

 void terminate();

 bool terminated() const;

 unsigned long operator()(

 unsigned long maxEventCount = 0);

 };

}

}

Class template fifo_scheduler constructor

fifo_scheduler(bool waitOnEmptyQueue = false);

Effects: Constructs a fifo_scheduler<> object. In multi-threaded builds, waitOnEmptyQueue is

forwarded to the constructor of a data member of type FifoWorker. In single-threaded builds, the

FifoWorker data member is default-constructed

Note: In single-threaded builds the fifo_scheduler<> constructor does not accept any parameters and

Page 14 of 35The Boost Statechart Library - Reference

2008/01/06

operator()() thus always returns to the caller when the event queue is empty

Class template fifo_scheduler modifier functions

template< class Processor >

processor_handle create_processor();

Requires: The Processor type must be a direct or indirect subtype of the event_processor class template

Effects: Creates and passes to FifoWorker::queue_work_item() an object of type

FifoWorker::work_item that, when later executed in FifoWorker::operator()(), leads to a call to

the constructor of Processor, passing an appropriate processor_context object as the only argument

Returns: A processor_handle object that henceforth identifies the created event processor object

Throws: Any exceptions propagated from FifoWorker::work_item() and

FifoWorker::queue_work_item()

Caution: The current implementation of this function makes an (indirect) call to global operator new().

Unless global operator new() is replaced, care must be taken when to call this function in applications with

hard real-time requirements

template< class Processor, typename Param1 >

processor_handle create_processor(Param1 param1);

Requires: The Processor type must be a direct or indirect subtype of the event_processor class template

Effects: Creates and passes to FifoWorker::queue_work_item() an object of type

FifoWorker::work_item that, when later executed in FifoWorker::operator()(), leads to a call to

the constructor of Processor, passing an appropriate processor_context object and param1 as

arguments
Returns: A processor_handle object that henceforth identifies the created event processor object

Throws: Any exceptions propagated from FifoWorker::work_item() and
FifoWorker::queue_work_item()

Note: boost::ref() and boost::cref() can be used to pass arguments by reference rather than by copy.

fifo_scheduler<> has 5 additional create_processor<> overloads, allowing to pass up to 6 custom

arguments to the constructors of event processors
Caution: The current implementation of this and all other overloads make (indirect) calls to global operator

new(). Unless global operator new() is replaced, care must be taken when to call these overloads in

applications with hard real-time requirements

void destroy_processor(processor_handle processor);

Requires: processor was obtained from a call to one of the create_processor<>() overloads on the

same fifo_scheduler<> object

Effects: Creates and passes to FifoWorker::queue_work_item() an object of type

FifoWorker::work_item that, when later executed in FifoWorker::operator()(), leads to a call to

the destructor of the event processor object associated with processor. The object is silently discarded if the

event processor object has been destructed before
Throws: Any exceptions propagated from FifoWorker::work_item() and

FifoWorker::queue_work_item()

Caution: The current implementation of this function leads to an (indirect) call to global operator delete()

(the call is made when the last processor_handle object associated with the event processor object is

destructed). Unless global operator delete() is replaced, care must be taken when to call this function in

applications with hard real-time requirements

void initiate_processor(processor_handle processor);

Requires: processor was obtained from a call to one of the create_processor() overloads on the same

fifo_scheduler<> object

Effects: Creates and passes to FifoWorker::queue_work_item() an object of type

FifoWorker::work_item that, when later executed in FifoWorker::operator()(), leads to a call to

initiate() on the event processor object associated with processor. The object is silently discarded if the

event processor object has been destructed before

Page 15 of 35The Boost Statechart Library - Reference

2008/01/06

Throws: Any exceptions propagated from FifoWorker::work_item() and

FifoWorker::queue_work_item()

void terminate_processor(processor_handle processor);

Requires: processor was obtained from a call to one of the create_processor<>() overloads on the

same fifo_scheduler<> object

Effects: Creates and passes to FifoWorker::queue_work_item() an object of type

FifoWorker::work_item that, when later executed in FifoWorker::operator()(), leads to a call to

terminate() on the event processor object associated with processor. The object is silently discarded if the

event processor object has been destructed before
Throws: Any exceptions propagated from FifoWorker::work_item() and
FifoWorker::queue_work_item()

void queue_event(

 const processor_handle & processor,

 const event_ptr_type & pEvent);

Requires: pEvent.get() != 0 and processor was obtained from a call to one of the

create_processor<>() overloads on the same fifo_scheduler<> object

Effects: Creates and passes to FifoWorker::queue_work_item() an object of type

FifoWorker::work_item that, when later executed in FifoWorker::operator()(), leads to a call to

process_event(*pEvent) on the event processor object associated with processor. The object is

silently discarded if the event processor object has been destructed before
Throws: Any exceptions propagated from FifoWorker::work_item() and
FifoWorker::queue_work_item()

void queue_work_item(const work_item & item);

Effects: FifoWorker::queue_work_item(item);

Throws: Any exceptions propagated from the above call

void terminate();

Effects: FifoWorker::terminate()

Throws: Any exceptions propagated from the above call

unsigned long operator()(unsigned long maxEventCount = 0);

Requires: Must only be called from exactly one thread
Effects: FifoWorker::operator()(maxEventCount)

Returns: The return value of the above call
Throws: Any exceptions propagated from the above call

Class template fifo_scheduler observer functions

bool terminated() const;

Requires: Must only be called from the thread that also calls operator()()

Returns: FifoWorker::terminated();

Header <boost/statechart/exception_translator.hpp>

Class template exception_translator

This class template is a model of the ExceptionTranslator concept.

Page 16 of 35The Boost Statechart Library - Reference

2008/01/06

Class template exception_translator parameters

Class template exception_translator synopsis & semantics

namespace boost

{

namespace statechart

{

 class exception_thrown : public event< exception_thrown > {};

 template< class ExceptionEvent = exception_thrown >

 class exception_translator

 {

 public:

 template< class Action, class ExceptionEventHandler >

 result operator()(

 Action action,

 ExceptionEventHandler eventHandler)

 {

 try

 {

 return action();

 }

 catch(...)

 {

 return eventHandler(ExceptionEvent());

 }

 }

 };

}

}

Header <boost/statechart/
null_exception_translator.hpp>

Class null_exception_translator

This class is a model of the ExceptionTranslator concept.

Class null_exception_translator synopsis & semantics

namespace boost

{

namespace statechart

{

 class null_exception_translator

 {

 public:

 template< class Action, class ExceptionEventHandler >

 result operator()(

 Action action, ExceptionEventHandler)

Template
parameter

Requirements Semantics Default

ExceptionEvent
A model of the Event
concept

The type of event that is dispatched when an
exception is propagated into the framework

exception_thrown

Page 17 of 35The Boost Statechart Library - Reference

2008/01/06

 {

 return action();

 }

 };

}

}

Header <boost/statechart/simple_state.hpp>

Enum history_mode

Defines the history type of a state.

namespace boost

{

namespace statechart

{

 enum history_mode

 {

 has_no_history,

 has_shallow_history,

 has_deep_history,

 has_full_history // shallow & deep

 };

}

}

Class template simple_state

This is the base class template for all models of the SimpleState concept. Such models must not call any of the
following simple_state<> member functions from their constructors:

void post_event(

 const intrusive_ptr< const event_base > &);

void post_event(const event_base &);

template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

void clear_shallow_history();

template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

void clear_deep_history();

outermost_context_type & outermost_context();

const outermost_context_type & outermost_context() const;

template< class OtherContext >

OtherContext & context();

template< class OtherContext >

const OtherContext & context() const;

template< class Target >

Target state_cast() const;

template< class Target >

Target state_downcast() const;

Page 18 of 35The Boost Statechart Library - Reference

2008/01/06

state_iterator state_begin() const;

state_iterator state_end() const;

States that need to call any of these member functions from their constructors must derive from the state class

template.

Class template simple_state parameters

Class template simple_state synopsis

namespace boost

{

namespace statechart

{

 template<

 class MostDerived,

 class Context,

 class InnerInitial = unspecified,

 history_mode historyMode = has_no_history >

 class simple_state : implementation-defined

 {

 public:

 // by default, a state has no reactions

 typedef mpl::list<> reactions;

 // see template parameters

 template< implementation-defined-unsigned-integer-type

 innerOrthogonalPosition >

 struct orthogonal

Template
parameter

Requirements Semantics Default

MostDerived The most-derived subtype of this class template

Context

A most-derived direct or indirect subtype of the
state_machine or asynchronous_state_machine class

templates or a model of the SimpleState or State concepts or
an instantiation of the simple_state<>::orthogonal class

template. Must be a complete type

Defines the
states' position
in the state
hierarchy

InnerInitial

An mpl::list<> containing models of the SimpleState or

State concepts or instantiations of the shallow_history or

deep_history class templates. If there is only a single inner

initial state that is not a template instantiation then it can also
be passed directly, without wrapping it into an mpl::list<>.

The Context argument passed to the simple_state<> or

state<> base of each state in the list must correspond to the

orthogonal region it belongs to. That is, the first state in the
list must pass MostDerived::orthogonal< 0 >, the second

MostDerived::orthogonal< 1 > and so forth.

MostDerived::orthogonal< 0 > and MostDerived are

synonymous

Defines the
inner initial
state for each
orthogonal
region. By
default, a state
does not have
inner states

unspecified

historyMode One of the values defined in the history_mode enumeration

Defines
whether the
state saves
shallow, deep
or both
histories upon
exit

has_no_history

Page 19 of 35The Boost Statechart Library - Reference

2008/01/06

 {

 // implementation-defined

 };

 typedef typename Context::outermost_context_type

 outermost_context_type;

 outermost_context_type & outermost_context();

 const outermost_context_type & outermost_context() const;

 template< class OtherContext >

 OtherContext & context();

 template< class OtherContext >

 const OtherContext & context() const;

 template< class Target >

 Target state_cast() const;

 template< class Target >

 Target state_downcast() const;

 // a model of the StateBase concept

 typedef implementation-defined state_base_type;

 // a model of the standard Forward Iterator concept

 typedef implementation-defined state_iterator;

 state_iterator state_begin() const;

 state_iterator state_end() const;

 void post_event(

 const intrusive_ptr< const event_base > &);

 void post_event(const event_base &);

 result discard_event();

 result forward_event();

 result defer_event();

 template< class DestinationState >

 result transit();

 template<

 class DestinationState,

 class TransitionContext,

 class Event >

 result transit(

 void (TransitionContext::*)(const Event &),

 const Event &);

 result terminate();

 template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

 void clear_shallow_history();

 template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

 void clear_deep_history();

 static id_type static_type();

 template< class CustomId >

 static const CustomId * custom_static_type_ptr();

Page 20 of 35The Boost Statechart Library - Reference

2008/01/06

 template< class CustomId >

 static void custom_static_type_ptr(const CustomId *);

 // see transit() or terminate() effects

 void exit() {}

 protected:

 simple_state();

 ~simple_state();

 };

}

}

Class template simple_state constructor and destructor

simple_state();

Effects: Constructs a state object

~simple_state();

Effects: Pushes all events deferred by the state into the posted events queue

Class template simple_state modifier functions

void post_event(

 const intrusive_ptr< const event_base > & pEvt);

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. All direct and indirect callers must be exception-neutral

Effects: outermost_context().post_event(pEvt);

Throws: Whatever the above call throws

void post_event(const event_base & evt);

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. All direct and indirect callers must be exception-neutral

Effects: outermost_context().post_event(evt);

Throws: Whatever the above call throws

result discard_event();

Requires: Must only be called from within react member functions, which are called by

custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral

Effects: Instructs the state machine to discard the current event and to continue with the processing of the
remaining events (see state_machine<>::process_event() for details)

Returns: A result object. The user-supplied react member function must return this object to its caller

result forward_event();

Requires: Must only be called from within react member functions, which are called by

custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral

Effects: Instructs the state machine to forward the current event to the next state (see
state_machine<>::process_event() for details)

Returns: A result object. The user-supplied react member function must return this object to its caller

result defer_event();

Page 21 of 35The Boost Statechart Library - Reference

2008/01/06

Requires: Must only be called from within react member functions, which are called by

custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral

Effects: Instructs the state machine to defer the current event and to continue with the processing of the remaining
events (see state_machine<>::process_event() for details)

Returns: A result object. The user-supplied react member function must return this object to its caller

Throws: Any exceptions propagated from Allocator::rebind<>::other::allocate() (the template

parameter passed to the base class of outermost_context_type)

template< class DestinationState >

result transit();

Requires: Must only be called from within react member functions, which are called by

custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral

Effects:

1. Exits all currently active direct and indirect inner states of the innermost common context of this state and
DestinationState. Innermost states are exited first. Other states are exited as soon as all their direct

and indirect inner states have been exited. The inner states of each state are exited according to the number
of their orthogonal region. The state in the orthogonal region with the highest number is always exited first,
then the state in the region with the second-highest number and so on.
The process of exiting a state consists of the following steps:

1. If there is an exception pending that has not yet been handled successfully then only step 5 is executed
2. Calls the exit member function (see synopsis) of the most-derived state object. If exit() throws

then steps 3 and 4 are not executed
3. If the state has shallow history then shallow history information is saved
4. If the state is an innermost state then deep history information is saved for all direct and indirect outer

states that have deep history
5. The state object is destructed

2. Enters (constructs) the state that is both a direct inner state of the innermost common context and either the
DestinationState itself or a direct or indirect outer state of DestinationState

3. Enters (constructs) the tree formed by the direct and indirect inner states of the previously entered state
down to the DestinationState and beyond depth first. The inner states of each state are entered

according to the number of their orthogonal region. The state in orthogonal region 0 is always entered first,
then the state in region 1 and so on

4. Instructs the state machine to discard the current event and to continue with the processing of the remaining
events (see state_machine<>::process_event() for details)

Returns: A result object. The user-supplied react member function must return this object to its caller

Throws: Any exceptions propagated from:

� Allocator::rebind<>::other::allocate() (the template parameter passed to the base class of

outermost_context_type)

� state constructors
� exit member functions

Caution: Inevitably destructs this state before returning to the calling react member function, which must

therefore not attempt to access anything except stack objects before returning to its caller

template<

 class DestinationState,

 class TransitionContext,

 class Event >

result transit(

 void (TransitionContext::*)(const Event &),

 const Event &);

Requires: Must only be called from within react member functions, which are called by

custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral

Effects:

Page 22 of 35The Boost Statechart Library - Reference

2008/01/06

1. Exits all currently active direct and indirect inner states of the innermost common context of this state and
DestinationState. Innermost states are exited first. Other states are exited as soon as all their direct

and indirect inner states have been exited. The inner states of each state are exited according to the number
of their orthogonal region. The state in the orthogonal region with the highest number is always exited first,
then the state in the region with the second-highest number and so on.
The process of exiting a state consists of the following steps:

1. If there is an exception pending that has not yet been handled successfully then only step 5 is executed
2. Calls the exit member function (see synopsis) of the most-derived state object. If exit() throws

then steps 3 and 4 are not executed
3. If the state has shallow history then shallow history information is saved
4. If the state is an innermost state then deep history information is saved for all direct and indirect outer

states that have deep history
5. The state object is destructed

2. Executes the passed transition action, forwarding the passed event
3. Enters (constructs) the state that is both a direct inner state of the innermost common context and either the

DestinationState itself or a direct or indirect outer state of DestinationState

4. Enters (constructs) the tree formed by the direct and indirect inner states of the previously entered state
down to the DestinationState and beyond depth first. The inner states of each state are entered

according to the number of their orthogonal region. The state in orthogonal region 0 is always entered first,
then the state in region 1 and so on

5. Instructs the state machine to discard the current event and to continue with the processing of the remaining
events (see state_machine<>::process_event() for details)

Returns: A result object. The user-supplied react member function must return this object to its caller

Throws: Any exceptions propagated from:

� Allocator::rebind<>::other::allocate() (the template parameter passed to the base class of

outermost_context_type)

� state constructors
� exit member functions

� the transition action

Caution: Inevitably destructs this state before returning to the calling react member function, which must

therefore not attempt to access anything except stack objects before returning to its caller

result terminate();

Requires: Must only be called from within react member functions, which are called by

custom_reaction<> instantiations. All direct and indirect callers must be exception-neutral

Effects: Exits this state and all its direct and indirect inner states. Innermost states are exited first. Other states are
exited as soon as all their direct and indirect inner states have been exited. The inner states of each state are exited
according to the number of their orthogonal region. The state in the orthogonal region with the highest number is
always exited first, then the state in the region with the second-highest number and so on.
The process of exiting a state consists of the following steps:

1. If there is an exception pending that has not yet been handled successfully then only step 5 is executed
2. Calls the exit member function (see synopsis) of the most-derived state object. If exit() throws then

steps 3 and 4 are not executed
3. If the state has shallow history then shallow history information is saved
4. If the state is an innermost state then deep history information is saved for all direct and indirect outer states

that have deep history
5. The state object is destructed

Also instructs the state machine to discard the current event and to continue with the processing of the remaining
events (see state_machine<>::process_event() for details)

Returns: A result object. The user-supplied react member function must return this object to its caller

Throws: Any exceptions propagated from:

� Allocator::rebind<>::other::allocate() (the template parameter passed to the base class of

outermost_context_type, used to allocate space to save history)

� exit member functions

Page 23 of 35The Boost Statechart Library - Reference

2008/01/06

Note: If this state is the only currently active inner state of its direct outer state then the direct outer state is
terminated also. The same applies recursively for all indirect outer states
Caution: Inevitably destructs this state before returning to the calling react member function, which must

therefore not attempt to access anything except stack objects before returning to its caller

template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

void clear_shallow_history();

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. The historyMode argument passed to the

simple_state<> or state<> base of HistoryContext must be equal to has_shallow_history or
has_full_history

Effects: Clears the shallow history of the orthogonal region specified by orthogonalPosition of the state

specified by HistoryContext

Throws: Any exceptions propagated from Allocator::rebind<>::other::allocate() (the template

parameter passed to the base class of outermost_context_type)

template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

void clear_deep_history();

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. The historyMode argument passed to the

simple_state<> or state<> base of HistoryContext must be equal to has_deep_history or

has_full_history

Effects: Clears the deep history of the orthogonal region specified by orthogonalPosition of the state

specified by HistoryContext

Throws: Any exceptions propagated from Allocator::rebind<>::other::allocate() (the template

parameter passed to the base class of outermost_context_type)

Class template simple_state observer functions

outermost_context_type & outermost_context();

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. If called from a destructor of a direct or indirect subtype then the

state_machine<> subclass portion must still exist

Returns: A reference to the outermost context, which is always the state machine this state belongs to

const outermost_context_type & outermost_context() const;

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. If called from a destructor of a direct or indirect subtype then the

state_machine<> subclass portion must still exist

Returns: A reference to the const outermost context, which is always the state machine this state belongs to

template< class OtherContext >

OtherContext & context();

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. If called from a destructor of a direct or indirect subtype with a

state_machine<> subtype as argument then the state_machine<> subclass portion must still exist

Returns: A reference to a direct or indirect context

template< class OtherContext >

Page 24 of 35The Boost Statechart Library - Reference

2008/01/06

const OtherContext & context() const;

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. If called from a destructor of a direct or indirect subtype with a

state_machine<> subtype as argument then the state_machine<> subclass portion must still exist

Returns: A reference to a const direct or indirect context

template< class Target >

Target state_cast() const;

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template

Returns: Has exactly the same semantics as state_machine<>::state_cast<>()

Throws: Has exactly the same semantics as state_machine<>::state_cast<>()

Note: The result is unspecified if this function is called when the machine is unstable

template< class Target >

Target state_downcast() const;

Requires: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template. Moreover, state_machine<>::state_downcast<>()

requirements also apply
Returns: Has exactly the same semantics as state_machine<>::state_downcast<>()

Throws: Has exactly the same semantics as state_machine<>::state_downcast<>()

Note: The result is unspecified if this function is called when the machine is unstable

state_iterator state_begin() const;

state_iterator state_end() const;

Require: If called from a constructor of a direct or indirect subtype then the most-derived type must directly or
indirectly derive from the state class template

Return: Have exactly the same semantics as state_machine<>::state_begin() and

state_machine<>::state_end()

Note: The result is unspecified if these functions are called when the machine is unstable

Class template simple_state static functions

static id_type static_type();

Returns: A value unambiguously identifying the type of MostDerived

Note: id_type values are comparable with operator==() and operator!=(). An unspecified collating

order can be established with std::less< id_type >

template< class CustomId >

static const CustomId * custom_static_type_ptr();

Requires: If a custom type identifier has been set then CustomId must match the type of the previously set

pointer
Returns: The pointer to the custom type identifier for MostDerived or 0

Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined

template< class CustomId >

static void custom_static_type_ptr(const CustomId *);

Effects: Sets the pointer to the custom type identifier for MostDerived

Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined

Page 25 of 35The Boost Statechart Library - Reference

2008/01/06

Header <boost/statechart/state.hpp>

Class template state

This is the base class template for all models of the State concept. Such models typically need to call at least one of
the following simple_state<> member functions from their constructors:

void post_event(

 const intrusive_ptr< const event_base > &);

void post_event(const event_base &);

template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

void clear_shallow_history();

template<

 class HistoryContext,

 implementation-defined-unsigned-integer-type

 orthogonalPosition >

void clear_deep_history();

outermost_context_type & outermost_context();

const outermost_context_type & outermost_context() const;

template< class OtherContext >

OtherContext & context();

template< class OtherContext >

const OtherContext & context() const;

template< class Target >

Target state_cast() const;

template< class Target >

Target state_downcast() const;

state_iterator state_begin() const;

state_iterator state_end() const;

States that do not need to call any of these member functions from their constructors should rather derive from the
simple_state class template, what saves the implementation of the forwarding constructor.

Class template state synopsis

namespace boost

{

namespace statechart

{

 template<

 class MostDerived,

 class Context,

 class InnerInitial = unspecified,

 history_mode historyMode = has_no_history >

 class state : public simple_state<

 MostDerived, Context, InnerInitial, historyMode >

 {

 protected:

 struct my_context

 {

 // implementation-defined

Page 26 of 35The Boost Statechart Library - Reference

2008/01/06

 };

 typedef state my_base;

 state(my_context ctx);

 ~state();

 };

}

}

Direct and indirect subtypes of state<> must provide a constructor with the same signature as the state<>

constructor, forwarding the context parameter.

Header <boost/statechart/shallow_history.hpp>

Class template shallow_history

This class template is used to specify a shallow history transition target or a shallow history inner initial state.

Class template shallow_history parameters

Class template shallow_history synopsis

namespace boost

{

namespace statechart

{

 template< class DefaultState >

 class shallow_history

 {

 // implementation-defined

 };

}

}

Header <boost/statechart/deep_history.hpp>

Class template deep_history

This class template is used to specify a deep history transition target or a deep history inner initial state. The
current deep history implementation has some limitations.

Class template deep_history parameters

Template
parameter

Requirements Semantics

DefaultState

A model of the SimpleState or State concepts. The type passed as
Context argument to the simple_state<> or state<> base

of DefaultState must itself pass has_shallow_history or

has_full_history as historyMode argument to its simple_state<> or

state<> base

The state that is
entered if shallow
history is not
available

Template
parameter

Requirements Semantics

Page 27 of 35The Boost Statechart Library - Reference

2008/01/06

Class template deep_history synopsis

namespace boost

{

namespace statechart

{

 template< class DefaultState >

 class deep_history

 {

 // implementation-defined

 };

}

}

Header <boost/statechart/event_base.hpp>

Class event_base

This is the common base of all events.

Class event_base synopsis

namespace boost

{

namespace statechart

{

 class event_base

 {

 public:

 intrusive_ptr< const event_base >

 intrusive_from_this() const;

 typedef implementation-defined id_type;

 id_type dynamic_type() const;

 template< typename CustomId >

 const CustomId * custom_dynamic_type_ptr() const;

 protected:

 event_base(unspecified-parameter);

 virtual ~event_base();

 };

}

}

Class event_base constructor and destructor

event_base(unspecified-parameter);

Effects: Constructs the common base portion of an event

DefaultState

A model of the SimpleState or State concepts. The type passed as
Context argument to the simple_state<> or state<> base

of DefaultState must itself pass has_deep_history or

has_full_history as historyMode argument to its simple_state<> or

state<> base

The state that is
entered if deep
history is not
available

Page 28 of 35The Boost Statechart Library - Reference

2008/01/06

virtual ~event_base();

Effects: Destructs the common base portion of an event

Class event_base observer functions

intrusive_ptr< const event_base > intrusive_from_this() const;

Returns: Another intrusive_ptr< const event_base > referencing this if this is already

referenced by an intrusive_ptr<>. Otherwise, returns an intrusive_ptr< const event_base >

referencing a newly created copy of the most-derived object

id_type dynamic_type() const;

Returns: A value unambiguously identifying the most-derived type
Note: id_type values are comparable with operator==() and operator!=(). An unspecified collating

order can be established with std::less< id_type >. In contrast to typeid(cs), this function is

available even on platforms that do not support C++ RTTI (or have been configured to not support it)

template< typename CustomId >

const CustomId * custom_dynamic_type_ptr() const;

Requires: If a custom type identifier has been set then CustomId must match the type of the previously set

pointer
Returns: A pointer to the custom type identifier or 0

Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined

Header <boost/statechart/event.hpp>

Class template event

This is the base class template of all events.

Class template event parameters

Class template event synopsis

namespace boost

{

namespace statechart

{

 template< class MostDerived, class Allocator = std::allocator< void > >

 class event : implementation-defined

 {

 public:

 static void * operator new(std::size_t size);

Template
parameter

Requirements Semantics Default

MostDerived

The most-derived
subtype of this class
template

Allocator

A model of the
standard Allocator
concept

Allocator::rebind< MostDerived >::other is

used to allocate and deallocate all event subtype
objects of dynamic storage duration, see operator
new

std::allocator<

void >

Page 29 of 35The Boost Statechart Library - Reference

2008/01/06

 static void operator delete(void * pEvent);

 static id_type static_type();

 template< class CustomId >

 static const CustomId * custom_static_type_ptr();

 template< class CustomId >

 static void custom_static_type_ptr(const CustomId *);

 protected:

 event();

 virtual ~event();

 };

}

}

Class template event constructor and destructor

event();

Effects: Constructs an event

virtual ~event();

Effects: Destructs an event

Class template event static functions

static void * operator new(std::size_t size);

Effects: Allocator::rebind< MostDerived >::other().allocate(1, static_cast<
MostDerived * >(0));

Returns: The return value of the above call
Throws: Whatever the above call throws

static void operator delete(void * pEvent);

Effects: Allocator::rebind< MostDerived >::other().deallocate(static_cast<
MostDerived * >(pEvent), 1);

static id_type static_type();

Returns: A value unambiguously identifying the type of MostDerived

Note: id_type values are comparable with operator==() and operator!=(). An unspecified collating

order can be established with std::less< id_type >

template< class CustomId >

static const CustomId * custom_static_type_ptr();

Requires: If a custom type identifier has been set then CustomId must match the type of the previously set

pointer
Returns: The pointer to the custom type identifier for MostDerived or 0

Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined

template< class CustomId >

static void custom_static_type_ptr(const CustomId *);

Effects: Sets the pointer to the custom type identifier for MostDerived

Page 30 of 35The Boost Statechart Library - Reference

2008/01/06

Note: This function is not available if BOOST_STATECHART_USE_NATIVE_RTTI is defined

Header <boost/statechart/transition.hpp>

Class template transition

This class template is used to specify a transition reaction. Instantiations of this template can appear in the
reactions member typedef in models of the SimpleState and State concepts.

Class template transition parameters

Class template transition synopsis

namespace boost

{

namespace statechart

{

 template<

 class Event,

 class Destination,

 class TransitionContext = unspecified,

 void (TransitionContext::*pTransitionAction)(

 const Event &) = unspecified >

 class transition

 {

 // implementation-defined

 };

}

}

Class template transition semantics

When executed, one of the following calls to a member function of the state for which the reaction was defined is

Template
parameter

Requirements Semantics Default

Event
A model of the Event concept or the class
event_base

The event triggering the
transition. If
event_base is specified,

the transition is triggered
by all models of the
Event concept

Destination

A model of the SimpleState or State concepts or
an instantiation of the shallow_history or

deep_history class templates. The source state

(the state for which this transition is defined)
and Destination must have a common direct

or indirect context

The destination state to
make a transition to

TransitionContext
A common context of the source and
Destination state

The state of which the
transition action is a
member

unspecified

pTransitionAction

A pointer to a member function of
TransitionContext. The member function

must accept a const Event & parameter and

return void

The transition action that
is executed during the
transition. By default no
transition action is
executed

unspecified

Page 31 of 35The Boost Statechart Library - Reference

2008/01/06

made:

� transit< Destination >(), if no transition action was specified

� transit< Destination >(pTransitionAction, currentEvent), if a transition action

was specified

Header <boost/statechart/in_state_reaction.hpp>

Class template in_state_reaction

This class template is used to specify an in-state reaction. Instantiations of this template can appear in the
reactions member typedef in models of the SimpleState and State concepts.

Class template in_state_reaction parameters

Class template in_state_reaction synopsis

namespace boost

{

namespace statechart

{

 template<

 class Event,

 class ReactionContext = unspecified,

 void (ReactionContext::*pAction)(

 const Event &) = unspecified >

 class in_state_reaction

 {

 // implementation-defined

 };

}

}

Class template in_state_reaction semantics

When executed then the following happens:

1. If an action was specified, pAction is called, passing the triggering event as the only argument

2. A call is made to the discard_event member function of the state for which the reaction was defined

Template
parameter

Requirements Semantics Default

Event
A model of the Event concept or the
class event_base

The event triggering the in-state
reaction. If event_base is

specified, the in-state reaction is
triggered by all models of the
Event concept

ReactionContext

Either the state defining the in-state
reaction itself or one of it direct or
indirect contexts

The state of which the action is a
member

unspecified

pAction

A pointer to a member function of
ReactionContext. The member

function must accept a const Event &

parameter and return void

The action that is executed during
the in-state reaction

unspecified

Page 32 of 35The Boost Statechart Library - Reference

2008/01/06

Header <boost/statechart/termination.hpp>

Class template termination

This class template is used to specify a termination reaction. Instantiations of this template can appear in the
reactions member typedef in models of the SimpleState and State concepts.

Class template termination parameters

Class template termination synopsis

namespace boost

{

namespace statechart

{

 template< class Event >

 class termination

 {

 // implementation-defined

 };

}

}

Class template termination semantics

When executed, a call is made to the terminate member function of the state for which the reaction was

defined.

Header <boost/statechart/deferral.hpp>

Class template deferral

This class template is used to specify a deferral reaction. Instantiations of this template can appear in the
reactions member typedef in models of the SimpleState and State concepts.

Class template deferral parameters

Class template deferral synopsis

namespace boost

{

namespace statechart

Template
parameter

Requirements Semantics

Event
A model of the Event concept
or the class event_base

The event triggering the termination. If event_base is

specified, the termination is triggered by all models of the
Event concept

Template
parameter

Requirements Semantics

Event
A model of the Event concept or
the class event_base

The event triggering the deferral. If event_base is specified,

the deferral is triggered by all models of the Event concept

Page 33 of 35The Boost Statechart Library - Reference

2008/01/06

{

 template< class Event >

 class deferral

 {

 // implementation-defined

 };

}

}

Class template deferral semantics

When executed, a call is made to the defer_event member function of the state for which the reaction was

defined.

Header <boost/statechart/custom_reaction.hpp>

Class template custom_reaction

This class template is used to specify a custom reaction. Instantiations of this template can appear in the
reactions member typedef in models of the SimpleState and State concepts.

Class template custom_reaction parameters

Class template custom_reaction synopsis

namespace boost

{

namespace statechart

{

 template< class Event >

 class custom_reaction

 {

 // implementation-defined

 };

}

}

Class template custom_reaction semantics

When executed, a call is made to the user-supplied react member function of the state for which the reaction was

defined. The react member function must have the following signature:

result react(const Event &);

and must call exactly one of the following reaction functions and return the obtained result object:

result discard_event();

result forward_event();

result defer_event();

template< class DestinationState >

Template
parameter

Requirements Semantics

Event
A model of the Event concept
or the class event_base

The event triggering the custom reaction. If event_base is

specified, the custom reaction is triggered by all models of the
Event concept

Page 34 of 35The Boost Statechart Library - Reference

2008/01/06

result transit();

template<

 class DestinationState,

 class TransitionContext,

 class Event >

result transit(

 void (TransitionContext::*)(const Event &),

 const Event &);

result terminate();

Header <boost/statechart/result.hpp>

Class result

Defines the nature of the reaction taken in a user-supplied react member function (called when a

custom_reaction is executed). Objects of this type are always obtained by calling one of the reaction

functions and must be returned from the react member function immediately.

namespace boost

{

namespace statechart

{

 class result

 {

 public:

 result(const result & other);

 ~result();

 private:

 // Result objects are not assignable

 result & operator=(const result & other);

 };

}

}

Class result constructor and destructor

result(const result & other);

Requires: other is not consumed

Effects: Copy-constructs a new result object and marks other as consumed. That is, result has destructive

copy semantics

~result();

Requires: this is marked as consumed

Effects: Destructs the result object

Revised 06 January, 2008

Copyright © 2003-2008 Andreas Huber Dönni

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at

http://www.boost.org/LICENSE_1_0.txt)

Page 35 of 35The Boost Statechart Library - Reference

2008/01/06

