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Introduction 

Most of the design decisions made during the development of this library are the result of the 
following requirements. 

Boost.Statechart should ... 

1. be fully type-safe. Whenever possible, type mismatches should be flagged with an error at 
compile-time  

2. not require the use of a code generator. A lot of the existing FSM solutions force the developer 
to design the state machine either graphically or in a specialized language. All or part of the 
code is then generated  

3. allow for easy transformation of a UML statechart (defined in http://www.omg.org/cgi-
bin/doc?formal/03-03-01) into a working state machine. Vice versa, an existing C++ 
implementation of a state machine should be fairly trivial to transform into a UML statechart. 
Specifically, the following state machine features should be supported: 

� Hierarchical (composite, nested) states  
� Orthogonal (concurrent) states  
� Entry-, exit- and transition-actions  
� Guards  
� Shallow/deep history  

4. produce a customizable reaction when a C++ exception is propagated from user code  
5. support synchronous and asynchronous state machines and leave it to the user which thread an 

asynchronous state machine will run in. Users should also be able to use the threading library 
of their choice  

6. support the development of arbitrarily large and complex state machines. Multiple developers 
should be able to work on the same state machine simultaneously  

7. allow the user to customize all resource management so that the library could be used for 
applications with hard real-time requirements  

8. enforce as much as possible at compile time. Specifically, invalid state machines should not 
compile  

9. offer reasonable performance for a wide range of applications  

Why yet another state machine framework? 

 

The Boost Statechart 
Library 
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Before I started to develop this library I had a look at the following frameworks: 

� The framework accompanying the book "Practical Statecharts in C/C++" by Miro Samek, 
CMP Books, ISBN: 1-57820-110-1 
http://www.quantum-leaps.com 
Fails to satisfy at least the requirements 1, 3, 4, 6, 8.  

� The framework accompanying "Rhapsody in C++" by ILogix (a code generator solution) 
http://www.ilogix.com/sublevel.aspx?id=53 
This might look like comparing apples with oranges. However, there is no inherent reason why 
a code generator couldn't produce code that can easily be understood and modified by humans. 
Fails to satisfy at least the requirements 2, 4, 5, 6, 8 (there is quite a bit of error checking 
before code generation, though).  

� The framework accompanying the article "State Machine Design in C++" 
http://www.ddj.com/184401236?pgno=1 
Fails to satisfy at least the requirements 1, 3, 4, 5 (there is no direct threading support), 6, 8.  

I believe Boost.Statechart satisfies all requirements. 

State-local storage 

This not yet widely known state machine feature is enabled by the fact that every state is represented 
by a class. Upon state-entry, an object of the class is constructed and the object is later destructed 
when the state machine exits the state. Any data that is useful only as long as the machine resides in 
the state can (and should) thus be a member of the state. This feature paired with the ability to spread 
a state machine over several translation units makes possible virtually unlimited scalability.  

In most existing FSM frameworks the whole state machine runs in one environment (context). That 
is, all resource handles and variables local to the state machine are stored in one place (normally as 
members of the class that also derives from some state machine base class). For large state machines 
this often leads to the class having a huge number of data members most of which are needed only 
briefly in a tiny part of the machine. The state machine class therefore often becomes a change 
hotspot what leads to frequent recompilations of the whole state machine. 

The FAQ item "What's so cool about state-local storage?" further explains this by comparing the 
tutorial StopWatch to a behaviorally equivalent version that does not use state-local storage. 

Dynamic configurability 

Two types of state machine frameworks 

� A state machine framework supports dynamic configurability if the whole layout of a state 
machine can be defined at runtime ("layout" refers to states and transitions, actions are still 
specified with normal C++ code). That is, data only available at runtime can be used to build 
arbitrarily large machines. See "A Multiple Substring Search Algorithm" by Moishe Halibard 
and Moshe Rubin in June 2002 issue of CUJ for a good example (unfortunately not available 
online).  

� On the other side are state machine frameworks which require the layout to be specified at 
compile time  

State machines that are built at runtime almost always get away with a simple state model (no 
hierarchical states, no orthogonal states, no entry and exit actions, no history) because the layout is 
very often computed by an algorithm. On the other hand, machine layouts that are fixed at compile 
time are almost always designed by humans, who frequently need/want a sophisticated state model 
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in order to keep the complexity at acceptable levels. Dynamically configurable FSM frameworks are 
therefore often optimized for simple flat machines while incarnations of the static variant tend to 
offer more features for abstraction. 

However, fully-featured dynamic FSM libraries do exist. So, the question is: 

Why not use a dynamically configurable FSM library for all state 
machines? 

One might argue that a dynamically configurable FSM framework is all one ever needs because any 
state machine can be implemented with it. However, due to its nature such a framework has a 
number of disadvantages when used to implement static machines: 

� No compile-time optimizations and validations can be made. For example, Boost.Statechart 
determines the innermost common context of the transition-source and destination state at 
compile time. Moreover, compile time checks ensure that the state machine is valid (e.g. that 
there are no transitions between orthogonal states).  

� Double dispatch must inevitably be implemented with some kind of a table. As argued under 
Double dispatch, this scales badly.  

� To warrant fast table lookup, states and events must be represented with an integer. To keep 
the table as small as possible, the numbering should be continuous, e.g. if there are ten states, 
it's best to use the ids 0-9. To ensure continuity of ids, all states are best defined in the same 
header file. The same applies to events. Again, this does not scale.  

� Because events carrying parameters are not represented by a type, some sort of a generic event 
with a property map must be used and type-safety is enforced at runtime rather than at compile 
time.  

It is for these reasons, that Boost.Statechart was built from ground up to not support dynamic 
configurability. However, this does not mean that it's impossible to dynamically shape a machine 
implemented with this library. For example, guards can be used to make different transitions 
depending on input only available at runtime. However, such layout changes will always be limited 
to what can be foreseen before compilation. A somewhat related library, the boost::spirit parser 
framework, allows for roughly the same runtime configurability. 

Error handling 

There is not a single word about error handling in the UML state machine semantics specifications. 
Moreover, most existing FSM solutions also seem to ignore the issue.  

Why an FSM library should support error handling 

Consider the following state configuration: 
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Both states define entry actions (x() and y()). Whenever state A becomes active, a call to x() will 
immediately be followed by a call to y(). y() could depend on the side-effects of x(). Therefore, 
executing y() does not make sense if x() fails. This is not an esoteric corner case but happens in 
every-day state machines all the time. For example, x() could acquire memory the contents of which 
is later modified by y(). There is a different but in terms of error handling equally critical situation in 
the Tutorial under Getting state information out of the machine when Running::~Running() 
accesses its outer state Active. Had the entry action of Active failed and had Running been 
entered anyway then Running's exit action would have invoked undefined behavior. The error 
handling situation with outer and inner states resembles the one with base and derived classes: If a 
base class constructor fails (by throwing an exception) the construction is aborted, the derived class 
constructor is not called and the object never comes to life. 
In most traditional FSM frameworks such an error situation is relatively easy to tackle as long as the 
error can be propagated to the state machine client. In this case a failed action simply propagates 
a C++ exception into the framework. The framework usually does not catch the exception so that the 
state machine client can handle it. Note that, after doing so, the client can no longer use the state 
machine object because it is either in an unknown state or the framework has already reset the state 
because of the exception (e.g. with a scope guard). That is, by their nature, state machines typically 
only offer basic exception safety. 
However, error handling with traditional FSM frameworks becomes surprisingly cumbersome as 
soon as a lot of actions can fail and the state machine itself needs to gracefully handle these errors. 
Usually, a failing action (e.g. x()) then posts an appropriate error event and sets a global error 
variable to true. Every following action (e.g. y()) first has to check the error variable before doing 
anything. After all actions have completed (by doing nothing!), the previously posted error event has 
to be processed what leads to the execution of the remedy action. Please note that it is not sufficient 
to simply queue the error event as other events could still be pending. Instead, the error event has 
absolute priority and has to be dealt with immediately. There are slightly less cumbersome 
approaches to FSM error handling but these usually necessitate a change of the statechart layout and 
thus obscure the normal behavior. No matter what approach is used, programmers are normally 
forced to write a lot of code that deals with errors and most of that code is not devoted to error 
handling but to error propagation. 

Error handling support in Boost.Statechart 

C++ exceptions may be propagated from any action to signal a failure. Depending on how the state 
machine is configured, such an exception is either immediately propagated to the state machine 
client or caught and converted into a special event that is dispatched immediately. For more 
information see the Exception handling chapter in the Tutorial. 

Two stage exit 

An exit action can be implemented by adding a destructor to a state. Due to the nature of destructors, 
there are two disadvantages to this approach: 

� Since C++ destructors should virtually never throw, one cannot simply propagate an exception 
from an exit action as one does when any of the other actions fails  

� When a state_machine<> object is destructed then all currently active states are 
inevitably also destructed. That is, state machine termination is tied to the destruction of the 
state machine object  

In my experience, neither of the above points is usually problem in practice since ... 

� exit actions cannot often fail. If they can, such a failure is usually either 
� not of interest to the outside world, i.e. the failure can simply be ignored  
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� so severe, that the application needs to be terminated anyway. In such a situation stack 
unwind is almost never desirable and the failure is better signaled through other 
mechanisms (e.g. abort())  

� to clean up properly, often exit actions must be executed when a state machine object is 
destructed, even if it is destructed as a result of a stack unwind  

However, several people have put forward theoretical arguments and real-world scenarios, which 
show that the exit action to destructor mapping can be a problem and that workarounds are overly 
cumbersome. That's why two stage exit is now supported. 

Asynchronous state machines 

Requirements 

For asynchronous state machines different applications have rather varied requirements: 

1. In some applications each state machine needs to run in its own thread, other applications are 
single-threaded and run all machines in the same thread  

2. For some applications a FIFO scheduler is perfect, others need priority- or EDF-schedulers  
3. For some applications the boost::thread library is just fine, others might want to use another 

threading library, yet other applications run on OS-less platforms where ISRs are the only 
mode of (apparently) concurrent execution  

Out of the box behavior 

By default, asynchronous_state_machine<> subtype objects are serviced by a 
fifo_scheduler<> object. fifo_scheduler<> does not lock or wait in single-threaded 
applications and uses boost::thread primitives to do so in multi-threaded programs. Moreover, a 
fifo_scheduler<> object can service an arbitrary number of 
asynchronous_state_machine<> subtype objects. Under the hood, fifo_scheduler<> 
is just a thin wrapper around an object of its FifoWorker template parameter (which manages the 
queue and ensures thread safety) and a processor_container<> (which manages the lifetime 
of the state machines). 

The UML standard mandates that an event not triggering a reaction in a state machine should be 
silently discarded. Since a fifo_scheduler<> object is itself also a state machine, events 
destined to no longer existing asynchronous_state_machine<> subtype objects are also 
silently discarded. This is enabled by the fact that asynchronous_state_machine<> subtype 
objects cannot be constructed or destructed directly. Instead, this must be done through 
fifo_scheduler<>::create_processor<>() and 
fifo_scheduler<>::destroy_processor() (processor refers to the fact that 
fifo_scheduler<> can only host event_processor<> subtype objects; 
asynchronous_state_machine<> is just one way to implement such a processor). Moreover, 
create_processor<>() only returns a processor_handle object. This must henceforth be 
used to initiate, queue events for, terminate and destroy the state machine through the scheduler. 

Customization 

If a user needs to customize the scheduler behavior she can do so by instantiating 
fifo_scheduler<> with her own class modeling the FifoWorker concept. I considered a 
much more generic design where locking and waiting is implemented in a policy but I have so far 
failed to come up with a clean and simple interface for it. Especially the waiting is a bit difficult to 
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model as some platforms have condition variables, others have events and yet others don't have any 
notion of waiting whatsoever (they instead loop until a new event arrives, presumably via an ISR). 
Given the relatively few lines of code required to implement a custom FifoWorker type and the 
fact that almost all applications will implement at most one such class, it does not seem to be 
worthwhile anyway. Applications requiring a less or more sophisticated event processor lifetime 
management can customize the behavior at a more coarse level, by using a custom Scheduler 
type. This is currently also true for applications requiring non-FIFO queuing schemes. However, 
Boost.Statechart will probably provide a priority_scheduler in the future so that custom 
schedulers need to be implemented only in rare cases. 

User actions: Member functions vs. function objects 

All user-supplied functions (react member functions, entry-, exit- and transition-actions) must be 
class members. The reasons for this are as follows: 

� The concept of state-local storage mandates that state-entry and state-exit actions are 
implemented as members  

� react member functions and transition actions often access state-local data. So, it is most 
natural to implement these functions as members of the class the data of which the functions 
will operate on anyway  

Limitations 

Junction points 

UML junction points are not supported because arbitrarily complex guard expressions can easily be 
implemented with custom_reaction<>s. 

Dynamic choice points 

Currently there is no direct support for this UML element because its behavior can often be 
implemented with custom_reaction<>s. In rare cases this is not possible, namely when a 
choice point happens to be the initial state. Then, the behavior can easily be implemented as follows: 

struct make_choice : sc::event< make_choice > {}; 
 
// universal choice point base class template 
template< class MostDerived, class Context > 
struct choice_point : sc::state< MostDerived, Context,  
  sc::custom_reaction< make_choice > > 
{ 
  typedef sc::state< MostDerived, Context,  
    sc::custom_reaction< make_choice > > base_type; 
  typedef typename base_type::my_context my_context; 
  typedef choice_point my_base; 
 
  choice_point( my_context ctx ) : base_type( ctx ) 
  { 
    this->post_event( boost::intrusive_ptr< make_choice >( 
      new make_choice() ) ); 
  } 
}; 
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// ... 
 
struct MyChoicePoint; 
struct Machine : sc::state_machine< Machine, MyChoicePoint > {}; 
 
struct Dest1 : sc::simple_state< Dest1, Machine > {}; 
struct Dest2 : sc::simple_state< Dest2, Machine > {}; 
struct Dest3 : sc::simple_state< Dest3, Machine > {}; 
 
struct MyChoicePoint : choice_point< MyChoicePoint, Machine > 
{ 
  MyChoicePoint( my_context ctx ) : my_base( ctx ) {} 
 
  sc::result react( const make_choice & ) 
  { 
    if ( /* ... */ ) 
    { 
      return transit< Dest1 >(); 
    } 
    else if ( /* ... */ ) 
    { 
      return transit< Dest2 >(); 
    } 
    else 
    { 
      return transit< Dest3 >(); 
    } 
  } 
}; 

choice_point<> is not currently part of Boost.Statechart, mainly because I fear that beginners 
could use it in places where they would be better off with custom_reaction<>. If the demand is 
high enough I will add it to the library. 

Deep history of orthogonal regions 

Deep history of states with orthogonal regions is currently not supported: 
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Attempts to implement this statechart will lead to a compile-time error because B has orthogonal 
regions and its direct or indirect outer state contains a deep history pseudo state. In other words, a 
state containing a deep history pseudo state must not have any direct or indirect inner states which 
themselves have orthogonal regions. This limitation stems from the fact that full deep history support 
would be more complicated to implement and would consume more resources than the currently 
implemented limited deep history support. Moreover, full deep history behavior can easily be 
implemented with shallow history: 

 

Of course, this only works if C, D, E or any of their direct or indirect inner states do not have 
orthogonal regions. If not so then this pattern has to be applied recursively. 

Synchronization (join and fork) bars 
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Synchronization bars are not supported, that is, a transition always originates at exactly one state and 
always ends at exactly one state. Join bars are sometimes useful but their behavior can easily be 
emulated with guards. The support of fork bars would make the implementation much more 
complex and they are only needed rarely. 

Event dispatch to orthogonal regions 

The Boost.Statechart event dispatch algorithm is different to the one specified in David Harel's 
original paper and in the UML standard. Both mandate that each event is dispatched to all orthogonal 
regions of a state machine. Example: 

 

Here the Harel/UML dispatch algorithm specifies that the machine must transition from (B,D) to 
(C,E) when an EvX event is processed. Because of the subtleties that Harel describes in chapter 7 of 
his paper, an implementation of this algorithm is not only quite complex but also much slower than 
the simplified version employed by Boost.Statechart, which stops searching for reactions as soon as 
it has found one suitable for the current event. That is, had the example been implemented with this 
library, the machine would have transitioned non-deterministically from (B,D) to either (C,D) or 
(B,E). This version was chosen because, in my experience, in real-world machines different 
orthogonal regions often do not specify transitions for the same events. For the rare cases when they 
do, the UML behavior can easily be emulated as follows: 
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Transitions across orthogonal regions 

 

Transitions across orthogonal regions are currently flagged with an error at compile time (the UML 
specifications explicitly allow them while Harel does not mention them at all). I decided to not 
support them because I have erroneously tried to implement such a transition several times but have 
never come across a situation where it would make any sense. If you need to make such transitions, 
please do let me know! 

 

Revised 03 December, 2006 

Copyright © 2003-2006 Andreas Huber Dönni 

Distributed under the Boost Software License, Version 1.0. (See accompanying file 
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) 
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