The Boost Statechart Libra- Rationale Pagel of 10

The Boost Statechart

bOOSt Library

LI RARI E S

Rationale

Introduction

Why yet another state machine framework
Statelocal storage

Dynamic configurability

Error handling

Asynchronous state machines

User actions: Member functions vs. function objects
Limitations

| ntroduction

Most of the design decisions made during the developoiehis library are the result of the
following requirements.

Boost.Statechart should ...

1. be fully type-safe. Whenever possible, type mismatsheuld be flagged with an error at
compile-time

2. notrequire the use of a code generator. A lot @fetkisting FSM solutions force the develc
to design the state machine either graphically orgpexialized language. All or part of the
code is then generated

3. allow for easy transformation of a UML statechaefifted inhttp://www.omg.org/cgi
bin/doc?formal/03)3-01) into a working state machine. Vice versa, an exjgstin+
implementation of a state machine should be fairlyatito transform into a UML statechart.
Specifically, the following state machine features $thtwe supported:

Hierarchical (composite, nested) states

Orthogonal (concurrent) states

Entry-, exit- and transition-actions

Guards

o Shallow/deep history
4. produce a customizable reaction when a C++ exce®ipropagated from user code

O O O O

5. support synchronous and asynchronous state machinksagadt to the user which thread an
asynchronous state machine will run in. Users should alstke to use the threading library
of their choice

6. support the development of arbitrarily large anthplex state machines. Multiple developers
should be able to work on the same state machine smaolialy

7. allow the user to customize all resource managestethiat the library could be used for
applications with hard real-time requirements

8. enforce as much as possible at compile time. Spdbjficavalid state machines should not
compile

9. offer reasonable performance for a wide range pliGgiions

Why yet another state machine framework?

2006/12/0:

The Boost Statechart Libra- Rational Page2 of 10

Before | started to develop this library | had a labkhe following framework

e The framework accompanying the book "Practical Sketds in C/C++" by Miro Samek,
CMP Books, ISBN: 1-57820-110-1
http://www.quanturdeaps.com
Fails to satisfy at least the requirements 1, 3, 4, 6, 8.

e The framework accompanying "Rhapsody in C++" by ILq@gixcode generator solution)
http://www.ilogix.com/sublevel.aspx?id=53
This might look like comparing apples with oranges. Hasvethere is no inherent reason \
a code generator couldn't produce code that caly éasunderstood and modified by hume
Fails to satisfy at least the requirements 2, 4, 5(heBe is quite a bit of error checking
before code generation, though).

e The framework accompanying the article "State MacBasign in C++"
http://www.ddj.com/184401236?pgno=1
Fails to satisfy at least the requirements 1, 3, 4,65€tls no direct threading support), 6, 8.

| believe Boost.Statechart satisfies all requirements.

State-local storage

This not yet widely known state machine feature is kbby the fact that every state is represented
by a class. Upon state-entry, an object of the clagsnistructed and the object is later destructed
when the state machine exits the state. Any datastligeful only as long as the machine resides in
the state can (and should) thus be a member of tlee $tas feature paired with the ability to spr

a state machine over several translation units makes mosstillly unlimited scalability.

In most existing FSM frameworks the whole state maching inione environment (context). That
is, all resource handles and variables local to the stathine are stored in one place (normally as
members of the class that also derives from some statermadidse class). For large state machines
this often leads to the class having a huge numbertafnd@mbers most of which are needed only
briefly in a tiny part of the machine. The state maeltlass therefore often becomes a change
hotspot what leads to frequent recompilations of thelevktate machine.

The FAQ item What's so cool about staliecal storage?further explains this by comparing the
tutorial StopWatch to a behaviorally equivalentsien that does not use state-local storage.

Dynamic configur ability

Two types of state machine frameworks

¢ A state machine framework supports dynamic configutghbilthe whole layout of a state
machine can be defined at runtime ("layout" referstates and transitions, actions are still
specified with normal C++ code). That is, data angilable at runtime can be used to build
arbitrarily large machines. See "A Multiple Substr®garch Algorithm" by Moishe Halibard
and Moshe Rubin in June 2002 issue of CUJ for a goad@ea unfortunately not available
online).

¢ On the other side are state machine frameworks whéghireethe layout to be specified at
compile time

State machines that are built at runtime almost alwayaway with a simple state model (no
hierarchical states, no orthogonal states, no entrgam@dctions, no history) because the layout is
very oftencomputed by an algorithm. On the other hand, machine layouts that are fixedrapile
time are almost always designed by humans, who frequestid/want a sophisticated state mc

2006/12/0:

The Boost Statechart Libra- Rational Page3 of 10

in order to keep the complexity at acceptable kvel/namically configurable FSM frameworks .
therefore often optimized for simple flat machineslevimcarnations of the static variant tend to
offer more features for abstraction.

However, fully-featured dynamic FSM libraries dostx5o, the question is:

Why not use a dynamically configurable FSM library for all state
machines?

One might argue that a dynamically configurable H&vhework is all one ever needs becaarsg
state machine can be implemented with it. Howewu,td its nature such a framework has a
number of disadvantages when used to implement staticimesc

o No compile-time optimizations and validations can been&dr example, Boost.Statechart
determines theanermost common conterf the transition-source and destination state at
compile time. Moreover, compile time checks ensurettiestate machine is valid (e.g. that
there are no transitions between orthogonal states).

o Double dispatch must inevitably be implemented with some &f a table. As argued under
Double dispatchthis scales badly.

o To warrant fast table lookup, states and events musipoesented with an integer. To keep
the table as small as possible, the numbering showdriguous, e.qg. if there are ten states,
it's best to use the ids 0-9. To ensure continuity fatl states are best defined in the same
header file. The same applies to events. Again, this doescale.

e Because events carrying parameters are not represgnéetype, some sort of a generic e\
with a property map must be used and tgpéety is enforced at runtime rather than at cor
time.

It is for these reasons, that Boost.Statechart wasflanh ground up tmot support dynamic
configurability. However, this does not mean thatitipossible to dynamically shape a machine
implemented with this library. For example, guards canded to make different transitions
depending on input only available at runtime. Howgesach layout changes will always be limited
to what can be foreseen before compilation. A somevetaied library, the boost::spirit parser
framework, allows for roughly the same runtime confituity.

Error handling

There is not a single word about error handling eaW\L state machine semantics specifications.
Moreover, most existing FSM solutions also seem to igtin@éssue.

Why an FSM library should support error handling

Consider the following state configuration:

4 A I

entry / x()

H entry / ()

2006/12/0:

The Boost Statechart Libra- Rational Page4 of 10

Both states define entry actions (x() and y()). Whenstate A becomes active, a call to x()°
immediately be followed by a call to y(). y() couldpEnd on the side-effects of x(). Therefore,
executing y() does not make sense if x() fails. This isanasoteric corner case but happens in
every-day state machines all the time. For examplesou()d acquire memory the contents of which
is later modified by y(). There is a different butemms of error handling equally critical situatior
the Tutorial undeGetting state information out of the machimkeenRunni ng: : ~Runni ng()
accesses its outer sta#tet i ve. Had the entry action &ct i ve failed and hadRunni ng been
entered anyway thdRunni ng's exit action would have invoked undefined behavite error
handling situation with outer and inner states resesrthie one with base and derived classes: If a
base class constructor fails (by throwing an excepttmgonstruction is aborted, the derived class
constructor is not called and the object never coméfeto

In most traditional FSM frameworks such an error situnais relatively easy to tackéslong asthe
error can be propagated to the state machine client. In this case a failed action simply propagates
a C++ exception into the framework. The framework ligues not catch the exception so that
state machine client can handle it. Note that, aftémg so, the client can no longer use the state
machine object because it is either in an unknowe stathe framework has already reset the state
because of the exception (e.g. with a scope guahd}. i, by their nature, state machines typically
only offer basic exception safety.

However, error handling with traditional FSM franaks becomes surprisingly cumbersome as
soon as a lot of actions can fail and the state madsaf needs to gracefully handle these errors.
Usually, a failing action (e.g. x()) then posts aprapriate error event and sets a global error
variable to true. Every following action (e.g. yfiyst has to check the error variable before doing
anything. After all actions have completed (by danmoghing!), the previously posted error event

to be processed what leads to the execution of thedseawtion. Please note that it is not sufficient
to simply queue the error event as other events cdllldespending. Instead, the error event has
absolute priority and has to be dealt with immediatehere are slightly less cumbersome
approaches to FSM error handling but these usuallysséate a change of the statechart layout and
thus obscure the normal behavior. No matter what apprsaused, programmers are normally
forced to write a lot of code that deals with erramsl most of that code it devoted to error
handling but to error propagation.

Error handling support in Boost.Statechart

C++ exceptions may be propagated from any action takgfailure. Depending on how the state
machine is configured, such an exception is either inatedgl propagated to the state machine
client or caught and converted into a special etlattis dispatched immediately. For more
information see th&xception handlinghapter in the Tutorial.

Two stage exit

An exit action can be implemented by adding a deiruiota state. Due to the nature of destruc
there are two disadvantages to this approach:

¢ Since C++ destructors should virtually never throwe oannot simply propagate an excep
from an exit action as one does when any of the aitteons fails

e« When ast at e_nmachi ne<> object is destructed then all currently active states
inevitably also destructed. That is, state machine temmis tied to the destruction of the
state machine object

In my experience, neither of the above points is ispabblem in practice since ...

¢ exit actions cannot often fail. If they can, suclaidufe is usually either
o not of interest to the outside world, i.e. the falean simply be ignore

2006/12/0:

The Boost Statechart Libra- Rational Page5 of 10

o SO severe, that the application needs to be termiaatgalay. In such a situation ste
unwind is almost never desirable and the failure iebstgnaled through other
mechanisms (e.g. abort())

o to clean up properly, often exit actiomgist be executed when a state machine object is
destructed, even if it is destructed as a result ik stnwind

However, several people have put forward theoreticaiments and real-world scenarios, which
show that the exit action to destructor mappiag be a problem and that workarounds are overly
cumbersome. That's whyo stage exits now supported.

Asynchronous state machines

Requirements
For asynchronous state machines different applicatiams tather varied requirements:

1. In some applications each state machine needs ta risnown thread, other applications are
single-threaded and run all machines in the samadhre

2. For some applications a FIFO scheduler is perfeatyotieed priority- or EDF-schedulers

3. For some applications the boost::thread library isfinet others might want to use another
threading library, yet other applications run on @S5 platforms where ISRs are the only
mode of (apparently) concurrent execution

Out of the box behavior

By default,asynchr onous_st at e_machi ne<> subtype objects are serviced by a
fifo_schedul er<>object.fifo_schedul er <> does not lock or wait in single-threaded
applications and uses boost::thread primitives to do sauiti-threaded programs. Moreover, a
fifo_schedul er <> object can service an arbitrary number of

asynchronous_st at e_machi ne<> subtype objects. Under the hoédf o_schedul er <>

is just a thin wrapper around an object ofFts oWbr ker template parameter (which manages the
gueue and ensures thread safety) apdacessor _cont ai ner <> (which manages the lifetime
of the state machines).

The UML standard mandates that an event not triggerirggction in a state machine should be
silently discarded. Sincefa f o_schedul er <> object is itself also a state machine, events
destined to no longer existimgynchr onous_st at e_nmachi ne<> subtype objects are also
silently discarded. This is enabled by the fact #satnchr onous_st at e_machi ne<> subtype
objects cannot be constructed or destructed dirdntead, this must be done through
fifo_schedul er<>::create_processor<>() and

fifo_schedul er<>::destroy_processor() (processor refers to the fact that
fifo_schedul er <> can only hosevent _pr ocessor <> subtype objects;
asynchronous_st at e_machi ne<> is just one way to implement such a processor). M@
creat e_processor<>() only returns gr ocessor _handl e object. This must henceforth
used to initiate, queue events for, terminate andaletie state machine through the scheduler.

Customization

If a user needs to customize the scheduler behaviarashéo so by instantiating
fifo_schedul er <> with her own class modeling tié f oWbr ker concept. | considered a
much more generic design where locking and waitimgdemented in a policy but | have so far
failed to come up with a clean and simple interfacetf@&specially the waiting is a bit difficult 1

2006/12/0:

The Boost Statechart Libra- Rational Page6 of 10

model as some platforms have condition variables, oliaars events and yet others don't have
notion of waiting whatsoever (they instead loop uatilew event arrives, presumably via an ISR).
Given the relatively few lines of code requiredrtplement a custorii f oWor ker type and the
fact that almost all applications will implement at maisé such class, it does not seem to be
worthwhile anyway. Applications requiring a less omresophisticated event processor lifetime
management can customize the behavior at a more deaeseby using a custoi®chedul er

type. This is currently also true for applicationsuieqg non-FIFO queuing schemes. However,
Boost.Statechart will probably providepai ori ty_schedul er in the future so that custom
schedulers need to be implemented only in rare cases.

User actions. Member functionsvs. function objects

All user-supplied functiong gact member functions, entry-, exit- and transition-@uts) must be
class members. The reasons for this are as follows:

e The concept of state-local storage mandates thatestateand state-exit actions are
implemented as members

e react member functions and transition actions often access-kical data. So, it is most
natural to implement these functions as members of thetblaskta of which the functions
will operate on anyway

Limitations

Junction points

UML junction points are not supported because arlifraomplex guard expressions can easily be
implemented witlcust om r eact i on<>s.

Dynamic choice points

Currently there is no direct support for this UMLraknt because its behavior can often be
implemented witlcust om r eact i on<>s. In rare cases this is not possible, namely when a
choice point happens to be the initial state. ThHesptehavior can easily be implemented as follows:

struct make_choice : sc::event< nake_choice > {};

/'l universal choice point base class tenplate

tenpl ate< cl ass Most Derived, class Context >

struct choice_point : sc::state< MstDerived, Context,
sc::customreaction< make_choice > >

{
t ypedef sc::state< MstDerived, Context,
sc::customreaction< nake_choi ce > > base_type;
t ypedef typenanme base_type::ny_context ny_context;
t ypedef choi ce_poi nt ny_base;
choi ce_point(ny_context ctx) : base_type(ctx)
{
t hi s->post _event (boost::intrusive_ptr< make _choice >(
new make_choice()));
}
}i

2006/12/0:

The Boost Statechart Libra- Rational Page7 of 10

/11

struct MyChoi cePoi nt;
struct Machine : sc::state_nmachi ne< Machi ne, MyChoi cePoint > {};

struct Destl : sc::sinple_state< Destl, Machine > {};
struct Dest2 : sc::sinple_state< Dest2, Machine > {};
struct Dest3 : sc::sinple_state< Dest3, Mchine > {}

struct MyChoi cePoint : choi ce_poi nt< MyChoi cePoi nt, Machine >

{
MyChoi cePoi nt (nmy_context ctx) : ny_base(ctx) {}

sc::result react(const make_choice &)

{
if (/% ... %)
{
return transit< Destl >();
}
else if (/* ... *)
{
return transit< Dest2 >();
}
el se
{
return transit< Dest3 >();
}
}

1
choi ce_poi nt <> is not currently part of Boost.Statechart, mainlysuse | fear that beginners
could use it in places where they would be bettewdh cust om r eact i on<>. If the demand i
high enough I will add it to the library.
Deep history of orthogonal regions

Deep history of states with orthogonal regions is culyenot supporter

2006/12/0:

The Boost Statechart Libra- Rational Page8 of 10

4 A)\
« Cc
® 0=)
4 B)
r)
® -
.
'd
o
L
kk JJ

Attempts to implement this statechart will lead to a cbevigme error because B has orthogonal
regions and its direct or indirect outer state costaideep history pseudo state. In other words, a
state containing a deep history pseudo state must wetamy direct or indirect inner states which
themselves have orthogonal regions. This limitation steéom the fact that full deep history supj
would be more complicated to implement and would consuore resources than the currently
implemented limited deep history support. Moreover,dekp history behavior can easily be
implemented with shallow history:

g A ™

- J

Of course, this only works if C, D, E or any of theirect or indirect inner states do not have
orthogonal regions. If not so then this pattern hdsetapplied recursively.

Synchronization (join and fork) bars

2006/12/0:

The Boost Statechart Libra- Rational Page9 of 10

4 A I

Synchronization bars are not supported, that isy&itran always originates at exactly one state
always ends at exactly one state. Join bars are sometefes lout their behavior can easily be
emulated with guards. The support of fork bars wouldaritak implementatiomuch more
complex and they are only needed rarely.

Event dispatch to orthogonal regions
The Boost.Statechart event dispatch algorithm isriffieto the one specified David Harel's

original paperand in thedJML standard Both mandate that each event is dispatched tathbhgona
regions of a state machine. Example:

g A ™
4 I g
B EviX C)
o ~)
- J e
4 I g
D Evii E
®— ~)
b J .
b J

Here the Harel/UML dispatch algorithm specifies that tnachine must transition from (B,D) to

(C,E) when an EvX event is processed. Because of thietse that Harel describes in chapter 7 of
his paperan implementation of this algorithm is not only quitenplex but also much slower than
the simplified version employed by Boost.Statechartciwisiops searching foeactionsas soon as

it has found one suitable for the current eventt)dad the example been implemented with this
library, the machine would have transitioned noredutnistically from (B,D) to either (C,D) or

(B,E). This version was chosen because, in my experienceal-world machines different
orthogonal regions often do not specify transitiomgtie same events. For the rare cases when they
do, the UML behavior can easily be emulated as\id|

2006/12/0:

The Boost Statechart Libra- Rational PagelC of 10

4 A !
Evx () / post_event(new Evi1()), post_event(new Evi<2())
é E) pxq [C

Evi<l \1
o -)
- J/ \
4 D N 4 E
Ev<2 \1
o ~)
- J -
. /

Transitions acr oss orthogonal regions

4 A ™\
4 B \
@)
.
__________________ R
VAN
C
¢)
-
e /

Transitions across orthogonal regions are currentiygéd with an error at compile time (the UML
specifications explicitly allow them while Harel doeot mention them at all). | decided to not
support them because | have erroneously tried to impiesueh a transition several times but have
never come across a situation where it would make arses# you need to make such transitions,
please do let me know!

~ HTML }
- .01
Revised 03 December, 2006

Copyright © 2003-2006\ndreas Huber Donni

Distributed under the Boost Software License, Version($&ke accompanying fi
LICENSE_1 0.t or copy aihttp://www.boost.org/LICENSE_1_0)

2006/12/0:

