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Abstract. Fill-reducing sparse matrix orderings have been a topic of active re-
search for many years. Although most such algorithms are developed and ana-
lyzed within a graph-theoretical framework, for reasons of performance, the cor-
responding implementations are typically realized with programming languages
devoid of language features necessary to explicitly represent graph abstractions.
Recently, generic programming has emerged as a programming paradigm capable
of providing high levels of performance in the presence of programming abstrac-
tions. In this paper we present an implementation of the Minimum Degree or-
dering algorithm using the newly-developed Generic Graph Component Library.
Experimental comparisons show that, despite our heavy use of abstractions, our
implementation has performance indistinguishable from that of the Fortran im-
plementation.

1 Introduction

Computations with symmetric positive definite sparse matrices are a common and im-
portant task in scientific computing. For efficient matrix factorization and linear system
solution, the ordering of the equations plays an important role. Because Gaussian elim-
ination (without numerical pivoting) of symmetric positive definite systems is stable,
such systems can be ordered before factorization takes place based only on the struc-
ture of the sparse matrix. Unfortunately, determining the optimal ordering (in the sense
of minimizing fill-in) is an NP-complete problem [1], so greedy heuristic algorithms
are typically used instead.

The development of algorithms for sparse matrix ordering has been an active re-
search topic for many years. The algorithms are typically developed in graph-theoretical
terms, while the most widely used implementations are coded in Fortran 77. Since For-
tran 77 supports no abstract data types other than arrays, the graph abstractions used
to develop and describe the ordering algorithms must be discarded for the actual im-
plementation. Although graph algorithms are well-developed and widely-implemented
in higher-level languages such as C or C++, performance concerns (which are often
paramount in scientific computing) have continued to restrict implementations of sparse
matrix ordering algorithms to Fortran.

Efforts to develop sparse matrix orderings with modern programming techniques
include [2] and [3]. These were based on an object-oriented, rather than generic, pro-
gramming paradigm and although they were well programmed, the reported perfor-
mance was still a factor of 4-5 slower than Fortran 77 implementations.
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The recently introduced programming paradigm known asgeneric programming[4,
5] has demonstrated that abstraction and performance are not necessarily mutually ex-
clusive. One example of a graph library that incorporates the generic programming
paradigm is the recently developed Generic Graph Component Library (GGCL) [6]. In
this paper we present an implementation of the minimum degree algorithm for sparse
matrix ordering using the GGCL. Although the implementation uses powerful graph
abstractions, its performance is indistinguishable from that of one of the most widely
used Fortran 77 codes.

The rest of this paper is organized as follows. We provide a brief overview of generic
programming and the Generic Graph Component Library in Sections 2 and 3. Algo-
rithms for sparse matrix ordering are reviewed in Section 4 and our implementation of
the Minimum Degree algorithm is given in Section 5 along with performance results in
Section 6.

2 Generic Programming

Recently, generic programming has emerged as a powerful new paradigm for software
development, particularly for the development of (and use of) component libraries. The
most visible (and perhaps most important) popular example of generic programming
is the celebrated Standard Template Library (STL) [7]. The fundamental principle of
generic programming is to separate algorithms from the concrete data structures on
which they operate based on the underlying abstract problem domain concepts, allowing
the algorithms and data structures to freely interoperate. That is, in a generic library,
algorithms do not manipulate concrete data structures directly, but instead operate on
abstract interfaces defined for entire equivalence classes of data structures. A single
generic algorithm can thus be applied to any particular data structure that conforms to
the requirements of its equivalence class.

In STL the data structures arecontainerssuch as vectors and linked lists anditera-
tors form the abstract interface betweenalgorithmsand containers. Each STL algorithm
is written in terms of the iterator interface and as a result each algorithm can operate
with any of the STL containers. In addition, many of the STL algorithms are parame-
terized not only on the type of iterator being accessed, but on the type of operation that
is applied during the traversal of a container as well. For example, thetransform()
algorithm has a parameter for aUnaryOperator function object(aka “functor”). Fi-
nally, STL contains classes known asadaptorsthat are used to modify underlying class
interfaces.

The generic programming approach to software development can provide tremen-
dous benefits to such aspects of software quality as functionality, reliability, usability,
maintainability, portability, and efficiency. The last point, efficiency, is of particular
(and sometimes paramount) concern in scientific applications. Performance is often of
such importance to scientific applications that other aspects of software quality may be
deliberately sacrificed if nice programming abstractions and high performance cannot
be simultaneously achieved. Until quite recently, the common wisdom has been that
high levels of abstraction and high levels of performance were,per se, mutually exclu-
sive. However, beginning with STL for general-purpose programming, and continuing
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with the Matrix Template Library (MTL) [5] for basic linear algebra, it has been clearly
demonstrated that abstraction does not necessarily come at the expense of performance.
In fact, MTL provides performance equivalent to that of highly-optimized vendor-tuned
math libraries.

3 The Generic Graph Component Library

The Generic Graph Component Library (GGCL) is a collection of high-performance
graph algorithms and data structures, written in C++ using the generic programming
style. Although the domain of graphs and graph algorithms is a natural one for the
application of generic programming, there are important (and fundamental) differences
between the types of algorithms and data structures in STL and the types of algorithms
and data structures in a generic graph library.

3.1 Graph Concepts

The graph interface used by GGCL can be derived directly from the formal definition
of a graph [8]. A graphG is a pair(V,E), whereV is a finite set andE is a binary relation
onV. V is called avertex setwhose elements are calledvertices. E is called anedge set
whose elements are callededges. An edge is an ordered or unordered pair(u,v)where
u,v2 V. If (u,v) is and edge in graphG, then vertexv is adjacentto vertexu. Edge
(u,v) is anout-edgeof vertexu and anin-edgeof vertexv. In adirectedgraph edges are
ordered pairs while in aundirectedgraph edges are unordered pairs. In adirectedgraph
an edge(u,v) leaves from thesourcevertexu to thetargetvertexv.

To describe the graph interface of GGCL we use generic programming terminology
from the SGI STL [4]. In the parlance of the SGI STL, the set of requirements on a
template parameter for a generic algorithm or data structure is called aconcept. The
various classes that fulfill the requirements of a concept are said to bemodelsof the
concept. Concepts can extend other concepts, which is referred to asrefinement. We
use abold sans serif font for all concept identifiers.

The three main concepts necessary to define our graph areGraph, Vertex, and
Edge. The abstract iterator interface used by STL is not sufficiently rich to encompass
the numerous ways that graph algorithms may compute with a graph. Instead, we for-
mulate an abstract interface, based onVisitor andDecorator concepts, that serves the
same purpose for graphs that iterators do for basic containers. These two concepts are
similar in spirit to the “Gang of Four” [9] patterns of the same name, however the im-
plementation techniques used are based on static polymorphism and mixins [10] instead
of dynamic polymorphism. Fig. 1 depicts the analogy between the STL and the GGCL.

Graph: The Graph concept merely contains a set of vertices and a set of edges and
a tag to specify whether it is a directed graph or an undirected graph. The only
requirement is thevertex setbe a model ofContainer and itsvalue type a
model ofVertex. Theedge setmust be a model ofContainer and itsvalue type
a model ofEdge.

Vertex: TheVertex concept provides access to the adjacent vertices, the out-edges of
the vertex and optionally the in-edges.



4

STL Algorithms

STL Containers

(a) (b)

Graph Algorithms

Graph
Data Structures

Vertex, Edge,
Visitor, Decorator

Iterator
Functor

Fig. 1.The analogy between the STL and the GGCL.

Edge: An Edge is a pair of vertices, one is thesourcevertex and the other is thetarget
vertex. In the unordered case it is just assumed that the position of thesourceand
targetvertices are interchangeable.

Decorator: As mentioned in the introduction, we would like to have a generic way
to access vertex and edge properties, such as color and weight, from within an
algorithm. The generic access method is necessary because there are many ways
in which the properties can be stored, and ways in which access to that storage is
implemented. We give the nameDecorator to the concept for this generic access
method. The implementation of graphDecorators is similar in spirit to the GoF
decorator pattern [9]. ADecorator is very similar to a functor, or function object.
We use theoperator[] instead ofoperator() since it is a better match for
the commonly used graph algorithm notations.

Visitor: In the same way that function objects are used to make STL algorithms more
flexible, we can use functor-like objects to make the graph algorithms more flexible.
We use the nameVisitor for this concept, since we are basically just using a tem-
plate version of the well known visitor pattern [9]. OurVisitor is somewhat more
complex than a function object, since there are several well defined entry points at
which the user may want to introduce a call-back.

TheDecorator andVisitor concepts are used in the GGCL graph algorithm interfaces
to allow for maximum flexibility. Below is the prototype for the GGCL depth first search
algorithm, which includes parameters for both aDecorator and aVisitor object. There
are two overloaded versions of the interface, one in which there is a defaultColorDec-
orator. The default decorator accesses the color property directly from the graph vertex.
This is analogous to the STL algorithms. For example, there are two overloaded ver-
sions of thelower bound() algorithm. One usesoperator< by default and the
other takes aBinaryOperator functor argument.

template <class Graph, class Visitor>
void dfs(Graph& G, Visitor visit);

template <class Graph, class Visitor, class ColorDecorator>
void dfs(Graph& G, Visitor visit, ColorDecorator color);
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3.2 Generic Graph Algorithms

With the abstract graph interface defined, generic graph algorithms can be written solely
in terms of the graph interface. The algorithms do not make any assumptions about the
actual underlying graph data structure.

The Breadth First Search (BFS) algorithm, as an example, is shown in Fig. 2. In this
algorithm we use the expressionu.out edges() to access theContainer of edges
leaving vertexu. We can then use the iterators of thisContainer to access each of the
edges. In this algorithm, theVisitor is used to abstract the kind of operation performed
on each edge as it is discovered. The algorithm also inserts each discovered vertex onto
Q. The vertex is accessed throughe.target vertex() .

template <class Graph, class QType, class Visitor>
void generalized_BFS(Graph& G, Graph::vertex_type s,

QType& Q, Visitor visitor)
{

typename Vertex::edgelist_type::iterator ei;
visitor.start(s);
Q.push(s);
while (! Q.empty()) {

Vertex u = Q.front();
Q.pop();
visitor.discover(u);
for (ei = u.out_edges().begin();

ei != u.out_edges().end(); ++ei) {
Edge e = *ei;
if (visitor.visit(e))

Q.push(e.target_vertex());
}
visitor.finish(u);

}
}

Fig. 2. The generalized Breadth First Search algorithm.

The concise implementation of algorithms is enabled by the genericity of the GGCL
algorithms, allowing us to exploit the reuse that is inherent in these graph algorithms in
a concrete fashion.

4 Sparse Matrix Ordering

The process for solving a sparse symmetric positive definite linear system,Ax = b, can
be divided into four stages as follows:

Ordering: Find a permutationP of matrixA,
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Symbolic factorization: Set up a data structure for Cholesky factorL of PAP T ,
Numerical factorization: DecomposePAP T intoLLT ,
Triangular system solution: SolveLLTPx = Pb for x.

Because the choice of permutationP will directly determine the number of fill-in ele-
ments (elements present in the non-zero structure ofL that are not present in the non-
zero structure ofA), the ordering has a significant impact on the memory and compu-
tational requirements for the latter stages. However, finding the optimal ordering forA

(in the sense of minimizing fill-in) has been proven to be NP-complete [1] requiring
that heuristics be used for all but simple (or specially structured) cases.

Developing algorithms for high-quality orderings has been an active research topic
for many years. Most ordering algorithms in wide use are based on a greedy approach
such that the ordering is chosen to minimize some quantity at each step of a simulated
n-step symmetric Gaussian elimination process. The algorithms using such an approach
are typically distinguished by their greedy minimization criteria [11].

4.1 Graph Models

In 1961, Parter introduced the graph model of symmetric Gaussian elimination [12]. A
sequence of elimination graphs represent a sequence of Gaussian elimination steps. The
initial Elimination graph is the original graph for matrixA. The elimination graph of
k's step is obtained by adding edges between adjacent vertices of the current eliminated
vertex to form a clique, removing the eliminated vertex and its edges.

In graph terms, the basic ordering process used by most greedy algorithms is as
follows:

1. Start:Construct undirected graphG0 corresponding to matrixA
2. Iterate:Fork = 1; 2; : : : ; until Gk

= ; do:
– Choose a vertexvk fromGk according to some criterion
– Eliminatevk fromGk to formGk+1

The resulting ordering is the sequence of verticesfv0; v1; : : :g selected by the algo-
rithm.

One of the most important examples of such an algorithm is theMinimum Degree
algorithm. At each step the minimum degree algorithm chooses the vertex with mini-
mum degree in the corresponding graph asvk. A number of enhancements to the basic
minimum degree algorithm have been developed, such as the use of a quotient graph
representation, mass elimination, incomplete degree update, multiple elimination, and
external degree. See [13] for a historical survey of the minimum degree algorithm.
Many of these enhancements, although initially proposed for the minimum degree al-
gorithm, can be applied to other greedy approaches as well. Other greedy approaches
differ from minimum degree by the choice of minimization criteria for choosing new
vertices. For example, to accelerate one of the primary bottlenecks of the ordering pro-
cess, theApproximate Minimum Degree(AMD) algorithm uses an estimate of the de-
gree (or external degree) of a vertex [14]. TheMinimum Deficiencyclass of algorithms
instead choose the vertex that would create the minimum number of fill-in elements. A
nice comparison of many of these different approaches can be found in [11].
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5 Implementation

Our GGCL-based implementation of MMD closely follows the algorithmic descrip-
tions of MMD given, e.g., in [15, 13]. The implementation presently includes the en-
hancements for mass elimination, incomplete degree update, multiple elimination, and
external degree. In addition, we use a quotient-graph representation. Some particular
details of our implementation are given below.

Prototype The prototype for our algorithm is

template<class Graph, class RandomAccessContainer,
class Decorator>

void mmd(Graph& G, RandomAccessContainer& Permutation,
RandomAccessContainer& InversePermutation,
Decorator SuperNodeSize, int delta = 0)

The parameters are used in the following way.

G (input/output) is the graph representing the matrixA to be ordered on input. On
output,Gcontains the results of the ordered elimination process. May be used sub-
sequently by symbolic factorization.

Permutation , InversePermutation (output) respectively contain the permu-
tation and inverse permutation produced by the algorithm.

SuperNodeSize (output) contains the size of supernodes or supernode representa-
tive node produced by the the algorithm. May be used subsequently by symbolic
factorization.

delta (input) controls multiple elimination.

Abstract Graph RepresentationOur minimum degree algorithm is expressed only in
terms of the GGCL abstract graph interface. Thus, any underlying concrete representa-
tion that models the GGCLGraph concept can be used. Not all concrete representations
will provide the same levels of performance, however. A particular representation that
offers high performance in our application is described below.

Concrete Graph RepresentationWe use an adjacency list representation within the
GGCL framework. In particular the graph is based on a templated “vector of vectors.”
The vector container used is an adaptor class built on top the STLvector class. Par-
ticular characteristics of this adaptor class include the following:

– Erasing elements does not shrink the associated memory. Adding new elements
after erasing will not need to allocate additional memory.

– Additional memory is allocated efficiently on demand when new elements are
added (doubling the capacity every time it is increased). This property comes from
STL vector.

We note that this representation is similar to that used in Liu's implementation, with
some important differences due to dynamic memory allocation. With the dynamic mem-
ory allocation we do not need to over-write portions of the graph that have been elim-
inated, allowing for a more efficient graph traversal. More importantly, information
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about the elimination graph is preserved allowing for trivial symbolic factorization.
Since symbolic factorization can be an expensive part of the entire solution process,
improving its performance can result in significant computational savings.

The overhead of dynamic memory allocation could conceivably compromise per-
formance in some cases. However, in practice, memory allocation overhead does not
contribute significantly to run-time for our MMD implementation. Finally, with our ap-
proach, somewhat more total memory may be required for graph representation. In the
context of the entire sparse matrix solution process this is not an important issue because
the memory used for the graph during ordering can be returned to the system for use in
subsequent stages (which would use more memory than even the dynamically-allocated
graph at any rate).

6 Experimental Results

6.1 Test Matrices

We tested the performance of our implementation using selected matrices from the
Harwell-Boeing collection [16], the University of Florida's sparse matrix collection [17],
as well as locally-generated matrices representing discretized Laplacians.

For our tests, we compare the execution time of our implementation against that of
the equivalent SPARSPAK algorithm (GENMMD). The tests were run on a Sun SPARC
Station U-30 having a 300MHz UltraSPARC-II processor, 256MB RAM, and Solaris
2.6. The GENMMD code was compiled with Solaris F77 4.2 with optimizing flags
-fast -xdepend -xtarget=ultra2 -xarch=v8plus -xO4 -stackvar
-xsafe=mem . The C++ code was compiled with Kuck and Associates KCC version
3.3e using aggressive optimization for the C++ front-end. The back-end compiler was
Solaris cc version 4.2, using optimizations basically equivalent to those given above for
the Fortran compiler.

Table 1 gives the performance results. For each case, our implementation and GEN-
MMD produced identical orderings. Note that the performance of our implementation
is essentially equal to that of the Fortran implementation and even surpasses the Fortran
implementation in a few cases.

7 Future Work

The work reported here only scratches the surface of what is possible using GGCL
for sparse matrix orderings (or more generally, using generic programming for sparse
matrix computations). The highly modular nature of generic programs makes the imple-
mentations of entire classes of algorithms possible. For instance, a generalized greedy
ordering algorithm (currently being developed) will enable the immediate implemen-
tation of most (if not all) of the greedy algorithms related to MMD (e.g., minimum
deficiency). We are also working to develop super-node based sparse matrices as part of
the Matrix Template Library and in fact to develop all of the necessary infrastructure for
a complete generic high-performance sparse matrix package. Future work will extend
these approaches from the symmetric positive definite case to the general case.
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Matrix n nnz GENMMD GGCL

BCSPWR09 1723 2394 0.007288410.007807
BCSPWR10 5300 8271 0.0306503 0.033222
BCSSTK15 3948 56934 0.13866 0.142741
BCSSTK18 1194868571 0.251257 0.258589
BCSSTK21 3600 11500 0.0339959 0.039638
BCSSTK23 3134 21022 0.150273 0.146198
BCSSTK24 3562 78174 0.0305037 0.031361
BCSSTK26 1922 14207 0.0262676 0.026178
BCSSTK27 1224 27451 0.009875250.010078
BCSSTK28 4410 107307 0.0435296 0.044423
BCSSTK29 13992302748 0.344164 0.352947
BCSSTK31 35588572914 0.842505 0.884734
BCSSTK35 30237709963 0.532725 0.580499
BCSSTK36 23052560044 0.302156 0.333226
BCSSTK37 25503557737 0.347472 0.369738
CRYSTK02 13965477309 0.239564 0.250633
CRYSTK03 24696863241 0.455818 0.480006
CRYSTM03 24696279537 0.293619 0.366581
CT20STIF 523291323067 1.59866 1.59809
LA2D32 1024 1984 0.004896570.006476
LA2D64 4096 8064 0.022337 0.028669
LA2D128 1638432512 0.0916937 0.119037
LA3D16 4096 11520 0.0765908 0.077862
LA3D32 3276895232 0.87223 0.882814
PWT 36519144794 0.312136 0.383882
SHUTTLE EDDY 1042946585 0.0546211 0.066164
NASASRB 548701311227 1.34424 1.30256

Table 1.Test matrices and ordering time in seconds, for GENMMD (Fortran) and GGCL (C++)
implementations of minimum degree ordering. Also shown are the matrix order (n) and the num-
ber of off-diagonal non-zero elements (nnz).
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